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A PROGRAM FOR CAICUIATING OPTIMUM DIMENSIONS OF ALPHA
RADIOISOTOPE CAPSULES EXPOSED TO VARYING STRESS AND TEMPERATURE

J. P. Nichols
D. R. Winkler

ABSTRACT

A method and computer program were developed for calcu-~
lating the creep and optimizing the dimensions of capsules
filled with alpha-emitting radioisotopes., The method solves
an integral equation that was developed assuming linear accu-
milation of partial creep lives and relating life to time-
dependent stress and temperature using the Larson-Miller pa-
rameter. The computer program, CAPSUL, is written in Fortran
language for the IBM 360/75 computer. The program makes &
least squares fit of the creep life function using conven-
tional constant stress, constant temperature creep data.
Dimensions of capsules having maximum thermal power per unit
of weight, volume, or area are calculated for a given creep
life and pressure-temperature history using a numerical
lagrange Multiplier formlation. The program also calculates
the life to a prescribed strain for capsules of given dimen-
sions and pressure-temperature history. The method has been
used to analyze creep data for the alloys 304 stainless
steel, Hastelloy N, Cb-1% Zr, FS-85, and T-222,

1.0 INTRODUCTION

In capsules containing alpha-emitting radioisotopes for use in space
power packages, it is desirable to provide maximum power per unit of
weight, volume, or projected area within the constraints imposed by the
need to maintain capsule integrity during normal operation and in the
event of one or more accidental conditions. Because of the continuous
generation of helium gas, together with decay of the thermal power, such
capsules are characterized by time-dependent stress and temperature. Very
high initial temperatures cause creep to be an important consideration in
the design.

A model and computer program were formulated for calculation of the

strain and optimum dimensions of capsules within the desired constraints,



The following sections will describe the model and the computer program
and present an analysis of experimental creep data that tend to confirm
the model. A glossary of symbols, example problems, and a program list

are included as appendices.
2.0 MATHEMATICAL MODEL

We wish to develop & phenomenological model of creep resulting from
time-varying stress and temperature in certain metals for which the only
available experimental data are ultimate strength properties at low tem-
peratures and constant load, constant temperature creep properties at
high temperatures. A precise analysis of the problem requires an equation
of state that relates stirain rate to stress, temperature, strain, and
time. No single eqQuation is available, but approximate equations may be
developed for restricted classes of materials. One such equation, which

3

has been substantiated for a number of m.etalsl’2 and plastics,~ assumes
that the fractional creep life for a given stress and temperature is inde-
pendent of other fractions sustained under different conditions and that

these fractions may be accumulated linearly. Stated mathematically:

R o (1)
)
where
6 0,T} = a function, hereafter called the "creep life function,"
that determines the life to a prescribed strain or rupture

for a given stress, o, and temperature, T,

32
il

time since application of the load,

€
]

resultant life to prescribed strain or rupture for time-

varying stress and temperature.

A suitable creep life function can be determined by empirically
fitting an equation to experimental data for stress as a function of a
time-temperature parameter. Several time-temperature parameters, including
those of Orr, Sherby, and Dorn; Manson and Haferd; and larson and Miller,

have been evaluated for this purpose; and it was found that the Iarson-Miller




parameter provided the most accurate correlation for a wide selection of
metals.u Iarson and Miller5 have related the creep life at a given stress
to the absolute temperature by an equation that may be derived from the

Arrhenius rate law,
T 1n k6 = constant, Iarson-Miller parameter .

The constant K has the physical connotation of "maximum rupture rate."
The common logarithm of K is called the larson-Miller constant and is in
the range of 10 to 30 for most metals when time is measured in hours.

The development of the creep life function for the present model is
illustrated in Fig. 1. Shown is a typical plot relating the logarithm of
measured nominal, uniaxial stress to the Iarson-Miller parameter. The
creep data are obtained at temperatures generally above one-~third the
absolute melting temperature by measuring the time to a specified strain
or rupture under conditions of constant load (constant nominal stress)
and temperature. The data for ultimate strength (or stress for a specified
"instantaneous" elastic and plastic strain) as a function of temperature
are determined under conditions of constant imposed strain rate which is
not necessarily the 'natural" strain rate measured in creep experiments.
We have assumed that the actual life measured in ultimate strength tests
is a good approximation of the equivalent creep life, particularly for
those materials which exhibit little strain hardening (nearly constant
nominal stress for nominal strain greater than the yield), because (1)
the life approximates unity and has little effect on the K6 product, and
(2) the stress is insensitive to the ILarson-Miller parameter in the
low-temperature range at which the ultimate strength data are used to
supplement creep data.

As temperature increases the creep (or time dependent) strain for a
given finite life becomes a progressively larger fraction of the total
strain and the fractional strain from elastic and 'instantaneous" plastic
strain becomes progressively more negligible. At high temperatures the
logarithm of the applied stress for many materialsu’5 is a linear function
of the larson-Miller parameter having intercept 1ln @ and slope m. We
have assumed that the creep component of stress, Ous has this linear form

at all temperatures.
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At temperatures below approximately one~third the absolute melting
temperature the creep strain becomes negligible with respect to the
elastic and plastic strain. In this region the stress is generally con-
stant, 9y’ over a large domain of the parameter. This behavior, as well
as the behavior at high temperatures, is accommodated by a resultant
stress function that is generated by adding reciprocals of the time
dependent (creep) end time independent components of stress. An empirically
fitted constant, y, provides for appropriate curvature in the transition
region.

The computer program, to be described in the next section, has pro-
vision for determination of the constants, @, m, and K by least squares
analysis of a set [0, T, 6] of creep data. The constants o, 8nd 7 are
selected by the investigator by analysis of a curve of ultimate strength
as a function of temperature and/or by iteration to determine the best
fit of combined ultimate strength-creep data in a time-temperature domain
of interest.

The general formulation of the approximate equation of state is
obtained by substituting the creep life function (Fig. 1) in Eq. (1) and
making provisions for individual safety factors on ultimate strength, Su,
and creep strength, Sc.

1
E €]

=Kf{7[c 77(t) } dt =D (2)

-5,7 o¥(¢)]

In principle, the integral in Eq. (2) can be evaluated mumerically
for any time behavior of stress and temperature. For radioisotope fuel
capsules we have chosen to neglect the effect of strain on the volume of
the capsule and reinforcing effects by layers other than the primary
structural material. End effects are also neglected since the capsules
have length-to-diameter ratio greater than 2. The stress is considered
to be the maximum nominal tensile stress, the circumferential stress at

the inner wall of the primary container

b4 2 + 5
o(0) - HU| BAL 20, | 3




where
P = pressure in the capsule,
E = weld efficiency,
R(4) = outer radius of primery container,

R(3) = inner radius of primary container.

The time-dependent pressure is calculated from the ideal gas law
since the helium gas is well above the critical point. The volume of
gas is the void volume at the center of the capsule plus any additional
void in the fuel region. The moles of gas are those that are present
initially plus those that are formed by decay of the radioisotope.

The heat flux is in transient equilibrium with the power in capsules
containing long-lived radioisotopes. Assuming that the overall heat
transfer coefficients do not vary apprecisbly with temperature, the
temperature of the helium gas and the container wall vary with time in

the following way:

(t) = Ta + (T° - Ta)e"‘t , (%)
where
T® = initial temperature,
Ta = ambient tempersature,

N = decay constant.

Explicit formulae for the individual temperatures, volumes, etc.,
are given in the following section which describes the program, CAPSUL.

Equation (2) reduces to one previously derived by Kennedy under
conditions of high constant temperature and constant stress rate, 0.
High temperature implies o = ot << ou; therefore, if the safety factors

are unity, Eq. (2) reduces to:

o, I
1 = Kf (%) at = K (&/oz)mr 9————-—1 ’ (5)
o) -I-r—m'+l

1
where —= and a/Kmm are the constants "n" and "A" used by Kennedy.

Kennedy,6 and later McCoy,7’8’9 verified that this equation is valid
for several materials (including 304 and 309 stainless steels, T-111,




T-222, and Cb-1% Zr) by comparing creep rupture lives obtained at high
constant temperatures and constant stress with those at the same tem-
perature but constant stress rate. These data serve, indirectly, to
validate Eq. (2). The use of the CAPSUL program to re-evaluate these
constant stress rate experiments by direct numerical integretion is
described in Sect. 4.3. The adequacy of the model can be tested for
other materials and at lower temperatures by performing experiments in
which stress and temperature are known functions of time and evaluating

the integral in Eq. (2) either anslytically or numerically.
3.0 CAPSUL PROGRAM

CAPSUL is a Fortran program for the IBM 360/75 computer. The program
calculates the life to a prescribed creep strain and optimum dimensions of
alpha radioisotope fuel capsules exposed to varying stress and temperature.
The capsules (Fig. 2) are right cylinders with multilayered walls and
elliptical end caps. Independent variables are RO, the inside radius of
the capsule; X(2), the thickness of the fuel layer; and X(4), the thickness
of the primary container wall.

The program has eight principal and eleven subsidiary subroutines.
ISTSQ determines constants (&, K, m) in an equation for rupture life (or
life to a prescribed strain) as a function of stress and temperature by a
least squares fit of creep-ultimate strength data. Once the constants are
determined, ISTSQ is normally bypassed for calculations with the same
material and design life criterion. The subroutine MAXlo uses a numerical
Iagrange multiplier formlation to find a maximum of one of three thermal
power functions (thermal power per unit projected area of a flat array of
capsules, per unit volume of a rectangular parallelepiped that encloses a
capsule and its auxiliary structural material, or per unit weight of capsule,
each calculated in subroutine WR) subject to a time-integrated stress-
temperature constraint (subroutine DR) that is dictated by a prescribed
rupture or strain life. The subroutine RZERO calculates the allowable in-
side radius as a function of thermsl power, if it is required that the
capsule surface temperature not exceed a given value if the capsule is

buried in an infinite medium of earth. The subroutine LIMIT examines +the
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dimensions of the optimized capsules for adherence to limits dictated by
engineering considerations. If the wall thickness or radius of the capsule
is too small or too large, the appropriate dimension is fixed at its
nearest limit and MAX or the subroutine DF is used to determine the maximum
power function in the remaining variable(s). The subroutine DF calculates
a8 single remaining variable to satisfy the stress-temperature constraint.
The program subroutine THETAC calculates the rupture life or life to a
prescribed strain of a capsule with specified dimensions. It is used to
determine the life of capsules that have been optimized on the basis of
another criterion. The subsidiary programs are WHT, which calculates the
weight of the fuel capsule; CONVERT and VSU, which convert the capsule
dimension variables to and from the MAX nomenclature; and SETUP, GTAIAM,
VECT, CONVG, OUTPUT, ARITH, MATQ, and STEP, which are used by MAX. Library
subroutines are SQRT, ABS, ALOG, ALOG10, SETFAULT, and EXP.

The main program, CAPSUL, reads and writes all input data, guides
the selection of subroutines for prescribed options, and prints pertinent
results. The program operates in any of four sequences. Each sequence
selection requires a complete complement of data cards and is termed a

"case." There is no upper limit on the allowable number of cases per run.
The sequence for a given case is determined by an input integer,
MOPT. The first sequence (MOPT = 1) is used to provide a fit of the creep

life function (Fig. 1) by a least squares analysis of creep data. The
second sequence (MOPT = 2) fits the creep life function and calculates
optimum capsule dimensions for a prescribed life. The third sequence
(MOPT = 3) calculates optimum capsule dimensions when the constants of the
creep life function are given as input. The fourth sequence (MOPT = 4)
calculates the life (or safety factor for a prescribed life) of a capsule
with given dimensions and material properties. The following sections
will describe the formulation of the subroutines for these sequences and

provide input information. A list of the program is given in Appendix C.

3.1 Ieast Squares Analysis of Creep Data (MOPT = 1)

This sequence begins with the reading of the constants MOPT, K,
SIGU (ou), and GAMMA (7). Next, the programs reads and stores information
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from K data cards containing K triples [SIGMA(I), T(I), THETA(I)] of
creep and/or ultimate strength data. Values of SIGMA(I) greater than
SIGU are not permitted. The mein program calls subroutine ISTSQ (which,
in turn, calls MATQ) and values of the fitted constants (ALPHA, XM, XKO)
are computed. The main program then computes the following quantities:

1. The value of stress, SIGB(I), predicted by the fitted creep
life function for each pair [T(I), THETA(I)].

2. The value of life, THETB(I), predicted by the fitted creep
1ife function for each pair [SIGMA(I), T(I)].

3. The Iarson-Miller parameter,
IMP(I) = T(I) logy, [ (xx0)(THETA(I))], for each triple of
data.

4. DITH(I), the common logarithm of the ratio THETA(I) to
THETB(I).

5. DI1SG(I), the common logarithm of the ratio SIGMA(I) to
SIGB(I).

6. SELTH, SELSG, and RESIG, the standard errors in the common
logarithm of creep life, common logarithm of stress, and

relative stress, respectively.

The quantities SELTH, SELSG, and RESIG are calculated as follows:

K 1/2
SELTH = [K‘%'? Y (pLrE(1))° ]
I=1
K 1/2
SELSG = [K“].'—‘g Y (pISG(1))° jl
I=1
1 S SIGMA(T) - SIGB(I) e
RESIG:[K-3 ) < STES(T >]
I=1

The progrem prints the values K, SIGU, GAMMA, ALPHA, XM, XKO, SELTH,
SEISG, and RESIG &and the array I, SIGMA(I), T(I), THETA(I), IMP(I),
THETB(I), SIGB(I), DLTH(I), DISG(I).
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The program then reads another data card containing the integer K.
If the new value of K is greater than the previous value, the program
reads an additional number of triples of creep data equal to the difference
in the two values of K. These new data are stored together with the
previous data and the entire calculational procedure is repeated. This
procedure, which permits a seqQuential analysis of data which are ordered
with respect to one of the variables [usually THETA(I)], continues until
the program reads a card with K = O. After reading a card with K = 0, the
program proceeds to the next case.

Execution time of this sequence is less than one minute for analysis
of 500 (the maximum allowable) number of triples of creep data that are

read in at a single time.

3.1.1 ISTSQ

This subroutine prepares the elements of a matrix equation for
determination of the constants ALPHA(x), XM(M), and XKO(K) by a least
squares analysis of the creep life function (Fig. 1). The function is
linearized by writing it in logarithmic form (see Appendix C). This
procedure is an approximation in the sense that the sum of the squares
of the residuals of the logarithms are minimized rather than those of

the original variables.

3.1.2 MATQ

This subroutine solves the matrix equation AX = Y for X using
modified Gaussian elimination (pivotal reduction using column pivots). A

CO-0P description of this subroutine is given by Clark and Kam.lo

3.1.3 Input Information

The sequence, MOPT = 1, uses only the data cards of type "a", "b",
and "c", shown in Table 1. The cards of type "a" and '"b" are followed
by K cards of type "c¢". For sequential analysis the initial set is
followed by stacks having a single card of type "b" followed by K'~-K

o

cards of type "c". Here, K' and K are the present and immediately pre-

ceeding values of K, respectively. The last card of type "c" in & case



Table 1. The Formet of Input Data Cards for the CAPSUL Program
Card
Type Format MOPT Data
a 312 1,2,3,4 MOPT, NMAX, MQ
b I3,2F10.0 1,2 K, SIGU, GAMMA
c 3F20.0 1,2 SIGMA(I), T(I), THETA(I)
a 8F10.0 2,3,h GAMMA, RR, E, PS, TS, H, ZM, TA
e 8r10.0 2,3,4 T8, A, ETA, BETA, DELTA, C, G, TAl
f E10.3, 2I3 2,3,4 IAMDA, N, NN
g 9F8.0 2,3,u4 X(1), I =19
h 9F8.0 2,3,L4 P(I), I =1,9
i 9F8.0 2,3,k XK(I), I =2,10
3 3E10.0 3,k ALPHA, YK, XM
k 4F10.0 2,3 X4bu, X4L, R3U, R3L
1 4E20.0 2,3,4 SIGU, SC, SU, PHI
m 4E20.0 2,3 Q, DELRO, DEIX2, DEIX4
n 4E20.0 2,3 TAU, T81, T82, XID
o 4E20.0 2,3 RO, X(2), X(4), THET
p 51k 2,3 IX, NIAM, NITER, ITER, IMOST
q 4F10.0 2,3 G, C, CRIT, AIAM
r 4E20.0 4 Q, DELTH, DELOME, THMAX
s 4E20.0 L TAU, T81, XID, RO
3E20.0 L X(2), X(4), THET
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is followed by a card of type "b" with K = O. The last case is followed
by a card of type "a" with MOPT = O.

3.2 Calculation of Capsule Dimensions for Maximum Specific Power
(MOPT = 2 or 3)

The sequence begins by reading and writing MOPT, NMAX, and NQ plus
46 normally unchanging constants. If MOPT = 2, the progrem calls the
entire segquence for MOPT = 1 to generate the three constants in the creep
life function from experimental data; if MOPT = 3, these constants are
read in and written. The program then reads and writes an additional 29
constants. Next, the program iterates (calling VSU and DR) to modify
the initial estimates of X(2) and X(4) such that the constraining function
is approximately satisfied (0.3 =D = L4,0). The iteration proceeds by
multiplying the previous value of X(2) by 0.95 if D is too large or by
multiplying the previous X(2) by 1.05 and the previous X(4) by 0.95 if D
is too small. The calculation stops, prints pertinent data, and proceeds
to the next case if an appropriate value of D is not determined in 100
iterations.

The subroutine VSU generates a set of independent variables [AIF(K)
and their increments, DEL(K) and WEL(K)] for the MAX format from the
capsule-dimension variables. The set of capsule-dimension variables to

be used in a case is determined by the integer NMAX,

NMAX = 1 Variables are RO, X(2), and X(4).
MAX = 2 Variasbles are RO and X(2).
NMAX = 3 The outer radius R(8) is specified. This

option is used to generate capsules with given

outside dimensions.
NMAX = L4 The radius R(3) is specified.

NMAX = 5 The radius RO is to be computed by the sub-
routine RZERO, assuming that the capsule is

buried in an infinite medium.
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The subroutine DR performs a mumerical integration of Eg. (2) and
generates a value of the constraining function D for a current set of
variables. The subroutine DR calls the subroutine CONVERT if NMAX 7 O
and MQ # O. The subroutine CONVERT reconverts the MAX variables to capsule
dimensions, depending on the value of NMAX. If NMAX = 5, the subroutine
CONVERT calls the subroutine RZERO to generate a burial-limited value of
RO that is compatible with the current values of X(2) and X(4).

The mein program calls the subroutine MAX if values of the variables
are determined that approximately satisfy the constraining eqQuation. MAX
uses & numerical Iagrange multiplier formulation to find stationary values
of the function W subject to the constraining equation D = C (C is the
constrained value). The numerical technique seeks a minimum in a defined
function YSQ by making successive linear approximations along the path of
steepest descent. The function ¥YSQ is the square of a vector that is zero
when the constraining equation is satisfied and the gradients of the
functions D and W are parallel, the condition for a local maximum or
minimim in the function W. The function W is to be maximized in the
present calculation; the minimum value is zero if X(2) = O. The calculation
proceeds by making outer and inner iterations. The outer iterations
(counted by M) are steps in the domain of the function ¥SQ resulting from
the linear approximation. Inner iterations (counted by LSTOP) prevent
overstepping which might result in & divergent segquence.

The subroutine MAX calls the subroutines DR and WR to generate values
of the constraining function D and the thermal power function W for use -

in tests and numerical computation of derivatives. The function W for

a given case is chosen by the input integer NQ: -
e =1 Thermal power per unit of projected aresa
R =2 Thermal power per unit volume of a circumscribed

rectangular parallepiped (W = W2).
MR =3 Thermal power per unit of weight (W = W3).

After each iteration, MAX writes current values of the following

quantities:




15

M NMumber of the outer iteration.

D Value of the constraining function.

W Value of the thermal power function (W1, W2,
or W3, depending on Q) that is to be
maeximized.

rsQ The function which has a value of zero

at the desired solution point. The square

of a vector Y.
zZ YSQ-C:2 (equal to ¥SQ for C = 1).

ISTOP Number of the inner iteration within the

outer iteration M.
Y(K) Components of the solution vector Y.

AIF(K), K = 1,NR Values of the independent variables and the
lagrange multiplier.

R(1), I = 0,9 Outer radius of the nine regions of the
capsule,
L length of the capsule.
AV2 Thermal power of the capsule.
Wl, W2, W3 The specific thermal power functions.
WT Weight of the capsule.

The MAX calculation stops when either the function YSQ becomes
smaller than a prescribed convergence criterion, (CRIT)Q, or a prescribed
number of inner (M = ITER) and outer (IMOST =< ISTOP) iterations is exceeded.
It is recommended that the present type of calculation be stopped by the
number of iterations since it is very difficult to predict an acceptable
maximm value of the solution vector. The selection of a maximum allowable
number of iterations has one disadvantage; it is often the case that
variables determined in other than the last iteration provide a better
solution of the problem. Since the properties of the capsule are completely

described after each iteration, the "best" set of dimensions can be
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determined by reviewing the printed matter and selecting the iteration
for which (1) the constraint D = 1.00 is approximately satisfied, (2) the
value W is maximum, and (3) YSQ is minimum.

When the MAX calculation stops, control is returned to the main
program. The last set of calculated dimensions are then examined by the
subroutine LIMIT to determine if the variables R(3) and X(4) are within
the preselected domains R3L = R(3) = R3U and X4L = X(4) =X4U. If the
variables [first X(4), then R(3)] are too small or too large, the
appropriate dimension is fixed at its nearest limit; NMAX is changed to
reflect a decrease in the number of independent variables; and control is
returned to the main program. If the previous value of NMAX was 1 (new
value 2 or 4), the entire calculation is repeated (starting with the
iteration to determine suitable values of the variables and proceeding
into the MAX subroutine) using the last computed values of RO and X(4)
or X(2) and X(4) as initial estimates. If the previous value of NMAX
was 2, 3, 4, or 5, the routine DF is called to calculate a value of the
single remaining independent variable, X(2), that satisfies the constraining
equation, DH = 1,00. When the calculation is completed, the main program
writes a final list of the wvariables; these numbers are different from
those computed in the last MAX iteration only if the program DF has been
called.

The MAX calculational procedure does not insure convergence to the
constrained maximum value of the function W. If the investigator is
unsure of the neighborhood of the solution point, he should submit
several cases with different initial estimates of the variables. If
results are erratic, the tolerance limits on the functions (PHI and Q)
may not be sufficiently smell. Increments in the variables (DELRO, DEIX2,
and DEIX4) must be chosen such as to cause only small changes in the
functions.

The execution time of this sequence for 100 iterations (inner plus
outer) with 100 initial increments (N) in the domain of integration is
approximately 3.5 minutes. The execution time is approximately propor-
tional to the product of ITER and N.
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3.2.1 DR

Subroutine DR calculates the value, DH, of the constraining function,
D, using Simpson's rule with N increments. An abbreviated formulation of
the function, the more important internal dependent variables (the integrand
and stress and temperature functions) follows. More specific formlations
are relegated to the list of the subroutine (Appendix C). Symbols are
defined in Appendix A.
TERM

= [ Fat
TNIT

o - gy | iﬁiiz ) igiz || Bl g B r@)(; ™) ]

x [ TA + (TO - TA)e-)"'T ]

T4 = TA + (T4O - TA)e™™

8

AV2 1 R(J

ThO = T8 + mrys Eu XK(JS[RJ+1]
J =

_ AV2 R(3) A 2 2 ../ R(2

DR doubles the number of increments in the domain of integration a
maximum of 16 times to satisfy & convergence criterion, PHI. The input
number PHI is compared to the ratio of the difference in the last two

values of D to the last value. The statement "failed to converge" is
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written if 16N increments are not sufficient. The library subroutine
SETFAULT is used to set exponential underflows to zero.

The subroutine DR will accommodate functions other than those for
which it is primarily intended (constant stress and/or temperature and
constant derivatives of stress) by such devices as redefining the constants,
setting T8 = TA, and dropping terms by setting leading constants equal
to zero. In making such formmlations, one must avoid negative argunents
of logarithms (including values that are to be raised to a power) and
division by zero.

3'2.2 -W-R

This subroutine calculates values of one of three specific thermal
power functions for use as the function W in MAX. Choice of the function
is determined by the current value of NQ@. If the subroutine is called
with M@ = O, the values of all three thermal power functions are cal-
culated. If M = 3, the subroutine calls subroutine WHT to calculate
the capsule weight. The three functions are:

—_ AV2
= T+X1D-R(8)-[R(8) + BETA]

B - AV2
= B-XID-R(8)-[R(B) + BETA]-IR(8) + DELTA]
AV2
W3 = —
v(I)-P(I)
I=1
3.2.3 IF

This subroutine uses Newton's method to calculate a value of X(2)
to satisfy the constraint D = 1. The calculation proceeds until D - 1 =Q.
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3.2.4 RZERO

This subroutine calculates RO from the following equation that relates
the outside radius of a cylindrical capsule buried in an infinite conduct-
ing medium to the thermal power and temperature difference (difference
between the maximum capsule surface temperature and ambient temperature

of the conducting medium).

8 -1
AV2-sinh™% (XID
RO+ ), x (J) = T -XK(10) -XID- (182 - TA)

X
J=1

In this equation AV2 (see list for subroutine WR) is a function of
RO. The variable RO is initially estimated by an approximate formula and
then calculated by iteration using Newton's method until the relative
change in AV2 is less than lO'6 or 10 iterations have occurred, Conver-
gence is normally accomplished in less than five iterations because the
initial approximation is good and the derivatives are computed analytically.
If the current values of the variables X(2) and X(4) are such that RO is
negative, RO is set equal to 0.2.

3.2.5 LIMIT

This subroutine examines the last set of variables computed by MAX
to determine if X(L4) and R(3) are within the preselected domains
X4L = X(4) = X4U and R3L = R(3) = R3U. If the current value of NMAX is 1
and X(4) is too large or too small, the variable X(4) is set at its
nearest limit and the entire MOPT sequence is repeated for NMAX = 2. If
the current value of NMAX is 1 and X4L = X(4) = x4U, but R(3) is too
large or too small, the variable R(3) is set at its nearest limit and
the calculational sequence is repeated for NMAX = 4., If the current value
of NMAX is 2 and R(3) is too large or too smell, R(3) is set at its nearest
limit and the independent variable X(2) is calculated to satisfy the
constraint D = 1,00. If the current value of NMAX is 3, 4, or 5 and X(4)
is too large or too small, X(4) is set at its nearest limit and X(2) is,

again, calculated by the subroutine DF.
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3.2.6 WHT

This subroutine calculates the radii, length, and weight of the fuel
capsule using the current values of the variables RO, X(2), and X(4). The
weight, WT, is calculated as the sum of the product of volume and density

of each region.

3.2.7 VSU, CONVERT

These two subroutines convert the capsule dimension variables to
and from the variables used in MAX. Depending on the current value of
NMAX, VSU generates the variables AIF(K) from RO, X(2), and/or X(4) and
the increments DEL(K) = WEL(K) from DELRO, DEIX2, and/or DEIX4. CONVERT

reconverts to capsule dimensions and calls RZERO if NMAX = 5.

3.2.8 MAX

The MAX program, used as & subroutine in the CAPSUL program, was
written by F. H. S. Clark and F. B. K. Kam of ORNL. The reader is referred
to their reportlo or to the program list (Appendix C) for detailed in-
formation. The following will describe the sequence of calculations in
MAX and a few changes that were made in the program for use in CAPSUL.

The main routine MAX begins by computing numbers that are to be
used as convergence criteria and setting the outer iteration index M
equal to one. Subroutine SETUP is then called. SETUP, which calls the
subroutines DR and WR, produces values of the functions D and W and all
their first and second derivatives at the current trial set of independent
variables, AIF(K). When control returns from SETUP to MAX, a test is
made on the input mumber NIAM. If NIAM = O, the subroutine GTAIAM is
called to generate an initial estimate of AIAM, the ILagrange multiplier.

A value of NLAM other than zero signals that the initial estimate of
AIAM has been provided as input. OSubroutine VECT 1s called next to
generate components of the solution vector Y.

Subroutine CONVG is next called. This subroutine tests to determine
if YSQ is less than the product of G (< 1) and its value in the previous
iteration. If either (1) M is equal to one, (2) YSQ is less than the
computed product, or (3) the input integer IMOST is equal to zero (a

~a
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change), an index, JWAY, is set equal to one. If these criteria are not
satisfied, JWAY is set equal to zero and the components of the step that
was last made in the domain of the function Y are multiplied by 0.5. The
index JWAY is set equal to -1 if the number of these (JWAY = O) inner
iterations has exceeded the input integer, IMOST.

After CONVG, subroutine OUTPUT writes current values of the pertinent
indices, variables, and functions and returns control to MAX. The MAX
program then tests the index, JWAY, to determine whether to stop the case
and proceed to the next one (JWAY = 1), to try an inner iteration with a
reduced step in the domain of the function (JWAY = 0), or to proceed with
convergence tests (JWAY = 1). If JWAY = O, the function ¥SQ is reevaluated
with the reduced increments until either the conditions for JWAY = 1 or
~1 are met.

If JWAY = 1, tests are made to determine if the trial solution is
converged or if the prescribed number (ITER) of outer iterations in M
have been made., If either of these questions is answered affirmatively,
the calculation is helted and input for the next case is called. Otherwise,
subroutine ARITH is called. In this subroutine elements of a matrix (A)
are evaluated at the new trisl point. Next, subroutine MATQ is called.
This solves for X the matrix equation (A)X = Y. The index M is increased
by one and subroutine STEP is called, with subsequent operations following

as previously described.

3.2.9 Input Information

The sequence for MOPT =2 or 3 requires, in order, one each of the
data cards "a" and "d" through "i" (Table 1). For MOPT = 2, these initial

trn

cards are followed by cards of type '"b" and "c", stacked in the same order
as for MOPT = 1; again, the last card of type "c" is followed by & card
"p" with K = O, The next card, of type "j", is included only if MOPT = 3,
One each of the remaining data cards of type "k" through "q" then follows
for either MOPT = 2 or 3. The last case is followed by a card of type

"a" with MOPT = O, The input constants T81, TAl, and NN are not used

for MOPT = 2 or 3; consequently, these fields mey be left blank.
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3.3 Capsule Lifetime Analysis (MOPT = 4)

This sequence begins by reading and writing 67 input constants, the
first of which is MOPT (NMAX and NQ must be zero). The program then calls
the subroutine THETAC. This subroutine uses the subroutine DR and Newton's
method with an initial estimate of life, THET, to calculate a value of
the resultant life, THETA, that satisfies the constraint D = 1.00. In
this case, D is the sum of two integrals. The first integral, over the
time domain from zero to the input number TAU, uses the value TS as the
initial steady state temperature of the outer surface of the capsule and
TA as the temperature of the environment. The second integral, over the
time period TAU to THET, uses T81 as the initial (time zero) steady state
temperature of the surface of the capsule and TAl as the temperature of
the environment. A value of TAU = O sets the first integral equal to zero.

If, on any iteration, THET is larger than an input constant, THMAX,
and D is less than one, THET is set equal to THMAX and a new variable,
OMEGA, 1s computed by Newton's method to satisfy the constraint D = 1.
OMEGA is a number that multiplies the safety factors SC and SU.

After each iteration, the program writes the current values of either
THETA, D, and the contribution of the second integral to D; or THMAX, D,
and OMEGA. The calculation stops and returns control to the main program
when D - 1 is less than the input number, Q.

Execution time of the program with N = NN = 100 is generally less
than 20 seconds.

The sequence for MOPT = 4 requires, in order, one each of the data
cards "a", "d" through "j”, "1", and "r" through "t" (Table 1). The
last case is followed by & card of type "a'" with MOPT = O.

4,0 RESULTS OF ANALYSIS OF CREEP DATA

Creep data for several alloys have been analyzed to confirm the
applicability of the model used in the CAPSUL program. The following
sections will present a statistical analysis of the predicted creep life
functions for three commercial materials, an analysis of the errors in
time extrapolations, and results obtained in predicting constant stress

rate data from conventional, constant stress, creep data.
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4,1 Predicted Creep Life Functions

Creep life functions for three commercial alloys (304 stainless
steel, Hastelloy N, and Co-1% Zr) were generated using the MOPT = 1 option
of the CAPSUL program. The fitted creep life function for rupture of
304 stainless steel (Fig. 3) was made using 189 reduced creep data pointsll
for 18 heats of bar and plate, covering the temperature domain from 900 to
1700°F and rupture life to 100,000 hr. The reported data, at decade
intervals, were generated by interpolation or extrapolation of the larger
body of experimental creep data for a given heat of material and tempera-
ture. Only three of the 100,000-hr data points were obtained from experi-
ments terminated at approximately 100,000 hr. The other thirteen data
points were obtained by extrapolation of data from experiments terminated
at earlier times in the 10,000 to 100,000-hr decade. The constants y and
au were chosen prior to the least squares analysis to force a fit of the
ultimate strength vs temperature (0.l-hr rupture) data in the temperature
domain above 4OO°F. A parametric plot of the derived creep rupture
function (Fig. 4) shows that the fit is good over the entire range of the
variables. The frequency distribution of the error (Fig. 5) in the
logarithm of the measured life and stress with respect to values predicted
by the fitted function is approximately gaussian. The distribution of the
error in relative stress is also approximately normal; the relative standard
error in stress is 0.17 (68% confidence level).

The fitted creep life function (Fig. 6) for rupture of Hastelloy N
(INOR-8) was made using 93-data poin.tslz’13 for five heats of rods, sheet,
and plate, covering the domains in temperature from 1100 to 1800°F and
rupture life to 14,400 hr. A parametric plot of the predicted function
and data at four temperatures is shown in Fig. 7. In this case, the
distribution of error (Fig. 8) is not gaussian, but the frequency peaks
on both sides of the fitted function. This phenomenon is explained by
the fact that approximately half of the data were obtained with the
comrercial Hastelloy N alloy which is somewhat stronger than the initial
version of the alloy, which was called INOR-8. If it is assumed that the
frequency distribution is gaussian, the relative standard error in

stress is 0.16.
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The creep life function for rupture of Cb-1% Zr (Fig. 9) was

generated using datalu’15

the temperature domain from 1600 to 2200°F and rupture life to 1733 hours.

from 25 heats of sheet, bar, and plate, covering

The abnormally large amount of scatter in the data, shown in the parametric
plot (Fig. 10), is caused, primarily, by changes that were made in the
composition and heat treatment of the alloy that resulted, accidentally
or deliberately, between the periods of testing. The frequency distribution
of the error (Fig. 11) is approximately gaussian. The relative standard
error in stress is 0.1k,

The analysis of these creep data indicates that the general creep
life function chosen for the model can provide a good description of
constant stress, constant temperature creep behavior in 304 stainless
steel, Hastelloy N, and Cb-1% Zr. Based on the results of othersu’5 who
have correlated creep data with the larson-Miller parameter (but, generally
not extending the fit into the ultimate strength range), we assume that
the same conclusion will apply to many other metals and alloys (probably
including most alloys of copper, nickel, iron, aluminum, and the re-
fractory metals). It is apparent from the analysis that the ultimate
strength data are useful for complementing the creep data in the high-
stress, low-temperature region.

The parametric plots of the fitted functions and data show that
the distribution of data with respect to the fitted functions tends to
be random in that the relative error does not vary significantly over the
domain of the variables. In general, we have found that the frequency
distribution function is most nearly gaussian when either one heat or
many heats of an alloy are analyzed. There may be significant deviation
from gaussian behavior if only a few heats of material, of varying

properties, are analyzed,

4.2 Analysis of Errors in Time Extrapolations

The accuracy of the model for extrapolation of creep life in the
three commercial alloys wes investigated by making fits of constant
stress and temperature creep data with rupture life less than a selected

time; using these fitted functions to predict the stress as a function of
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temperature to cause rupture at a greater time; and comparing the pre-
dicted stress with the actual average stress which caused failure at the
greater time. The accuracy of the extrapolation, expressed in terms of

the maximum relative error (or bias) in the predicted stress as a function
of temperature, is then compared to the standard error (error at 67 percent
confidence level since the distribution of stress data is approximately
gaussian) in relative stress caused by the normal scatter of data about

the predicted best-fit function. The model is then known to provide for
adequate extrapolation of creep within the time range such that the bias

in the predicted stress is small as compared to the standard error.

The first column of Table 2 shows the material, number of heats, and
temperature range of the creep data that were analyzed. The next two
columns show the values of the selected times and the corresponding number
of data points (with rupture life less than the selected time) for which
best-fit functions were evaluated. The fourth column shows the values of
rupture life for which stress as a function of temperature was predicted
by the model. The fifth column shows the standard error in relative
stress for each of best-fit functions. The last column shows the maximm
bias in the predicted stress, defined as the ratio of the maximum dif-
ference between the predicted and mean-measured stress to the mean-measured
stress within the temperature range of the experiments.

Two very striking, but tenuous, conclusions may be drawn based on
the results of Table 2,

1. It appears that,for a large number of metals, the present
creep model can provide a fit of creep data such that the
standard error in relative stress will not exceed 15 to 17
percent. Knowledge of the statistics of the fit and the
frequency distribution function will permit the choice of
a design stress for & predetermined confidence level.

2. In each of the commercial alloys analyzed, the bias in
predicted stress for a long-time extrapolation becomes
small, using only 100 to 200-hr creep data. For these
alloys, the creep data for times greater than 100 to 200
hours is superfluous. The data seem to suggest that if
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creep data are available that span two to three decades in
time (1 to 200 hours, for example), then a fitted function
can be determined that will permit extremely long extra-
polations in time with the error of the extrapolation being
less than the normal scatter in moderate-time creep rupture
data., This conclusion assumes, of course, that the long-

term environment is the same as the test environment.

The data also suggest a possible method for avoiding experiments
of unnecessarily long term in creep determinations. The creep program
would begin by generating first short time; then, progressively, longer
time data., The composite data would then be fitted, sequentially, as
each new, longer-time data point is generated; and the fitted function
would be used to predict the conditions to cause failure (or a given
strain) at a very long time (perhsps 100,000 hours). The creep program
would be terminated when sufficient date are generated such that sequen=-
tial data cause small and random (as opposed to monotonic) changes in

the predicted conditions to cause long-term failure,

4,3 Analysis of Constant Stress Rate Tests

The accuracy of the model in predicting creep, under conditions of
varying stress, was investigated by analyzing constant stress rate tests
with the CAPSUL program. The time to rupture of the alloy T-222 and
time to 1 percent strain of the alloy FS-85 exposed to a constantly
increasing stress rate and constant temperature were calculated (Fig. 12)
using a creep life function that was generated using conventional creep
and ultimate strength data9’l6 over a wide range of stress and temperature.
The predicted stress rates agree with the measured data for the alloy
T-222 within experimental error. Agreement with the FS-85 data is satis-
factory, but it appears that the predicted results are biased at the
particular temperature at which the experiments were conducted.

McC0y8 has analyzed these same creep data using & simpler, but less
general, model. McCoy fitted conventional creep data, at the specific
temperature of interest, by assuming that the logarithm of stress is
linearly related to the logarithm of the creep life, an assumption that
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Fig. 12, Predicted and Observed Creep Behavior of T-222 and

FS-85 at a Constant Stress Rate and Constant Temperature,
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is equivalent to the assumption used in the present method if the temper-
ature is high. McCoy's predictions are also good, but no better than
those predicted by the present method in spite of the fact that his model
was based on data only for the specific temperature of interest. McCoy
required two equations to provide a good fit of the FS-85 data over the
stress rate domain of the experiments.

The procedure for determining the l-percent-creep function for the
FS-85 is shown as an example of the MOPT = 1 sequence of the CAPSUL
program in Appendix B. Also shown is one of the constant stress rate
calculations for rupture of the T-222 alloy as an example of the MOPT = 4

sequence,
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APPENDIX A

Units and Glossary of Symbols

Iength - inch
Mass - pound
Time - hour
Temperature - degrees Rankine
Heat - Btu

Symbols

Thermal power per unit of fuel region.
The lagrange multiplier.
Independent variables in MAX.

The fitted value of creep stress for a
Iarson-Miller parameter of zero.

Thermal power of the fuel region.

One-half the surface-to-surface distance
between parallel columns of capsules,

Constrained value of DH.

An input value of a convergence criterion
for MAX.

Value of the constraining function, Eq. (2).

The increment in the variables AIF(K) in
calculating DH.

The increment in OMEGA.

Thickness of the structural liner surrounding
the capsule.

The increment in RO.



DELTH
DELX2
DELXL
DISG(I), I
DLTH(I), I
E

ETA

JAM

IAMDA, A

1]

1,500

1,500

L2

The increment of THET.

The increment in X(2).

The increment in X(L4).

The common logarithm of SIGMA(I)/SIGB(I).
The common logerithm of THETA(I)/THETB(I).
Capsule weld efficiency.

Volume fraction of gas space in the fuel
region.

Integrand of the constraining function.

A number slightly less than 1.0 in the
convergence criterion for MAX.

A constant in F, usually 1.0 or 2.0.

Weight fraction of alpha-emitting isotope
in the fuel.

An index.

Maximum number of outer iterations in MAX.
Number of independent variables in MAX.
An index.

An integer that counts and limits to 100
the number of iterations to adjust input
estimates of X(2) and X(4) such that

0.3 <DH =}.0.

Maximum number of data points in LSTSQ.
Elsewhere an index.

An index in THETAC. Overall length of the
fuel capsule in the main program.

Iength of fueled section of capsule.

Iength of the straight section of the
capsule.

Decay constant of the radioisotope.




IMOST
mwP(I), I = 1,500

LSTOP

NITER

NLAM

e

NR

OMEGA, XK(1)

P(I), I =1,9

PHT
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Maximum number of inner iterations in MAX.
Value of the larson-Miller parameter.

An index which counts immer iterations in
MAX.

An index which counts outer iterations in
MAX. An index in RZERO.

An input index which decides the sequence
to use in the main program

The initial number of (even) increments for
Simpson's rule integration in DR. If

MOPT = 2 or 3, N is the initial number of
increments in the time domain 0.0 to THET.
If MOPT = 4, N is the initial number of
increments in the domain 0.0 to TAU and NN
is the initial number of increments in the
domain TAU to THET.

An input index to determine if a convergence
criterion is to be used in MAX.

An input index to determine if GTAIAM is to
be used to estimate the initial value of
the Iagrange multiplier.

An input index that specifies the set of
independent capsule dimension variables
that are subject to optimization.

An index that causes additional creep data
cards to be read and analyzed by LSTSQ
together with data previocusly in storage.

An input index that decides the function to
be maximized.

The index of the ILagrange multiplier, IX + 1.
A nunmber that multiplies the safety factors
SC and SU in THETAC to satisfy DH = 1.0 if
THET > THMAX.

Density of the material in region I of the
capsule.

An input convergence criterion for the
Simpson's Rule integration in DR.



Ly

PS Initial pressure in the fuel capsule.

Q An input convergence criterion on DH for
use in the subroutines DF and THETAC.

R(1), I =1,8 Outer radius of region I of the capsule.

RESIG The standard error in relative stress for
the fitted creep life function.

RK Y5Q+G, a test quantity in MAX.

RO The outer radius of the void region of the
capsule.

R3L The imposed lower limit for the outer radius

of region 3 of the capsule.

R3U The imposed upper limit for the outer radius
of region 3 of the capsule.

sC, Sc The safety factor on creep stress.

SELTH The standard error in the common logarithm
of creep life for the fitted creep life
function.

SELSG The standard error in the common logarithm
of stress for the fitted creep life function.

SIGB(I), I = 1,500, o The value of stress predicted by the fitted
creep life function for the values T(I)
and THETA(I).

STGMA(I), I = 1,500 The measured value of stress in the input
creep data.

SIGT The current value of stress as a function
of time in DR.

SIGU, % An imposed upper limit on stress as a function
of the Larson-Miller parameter.

108 Su The safety factor on SIGU.

T, t Time since application of the stress.

(1), I = 1,500 The measured value of absolute temperature
in the creep datsa.

TA Ambient temperature of the earth (MOPT = 2 or 3)

and the first environment (MOPT = 4).




TAL

TAU

TERM

THET, THETA, ©

THETA(I), I

THETB(I), I

THMAX

TNIT

TS

TO

Th

T40
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T81

1,500

1,500, 6

45

Ambient temperature of the second environment
(MOPT = L), see T81.

Ilifetime in the initial service environment
for use in THETAC.

The upper limit of the integral in DR either
TAU or THET.

Resultant life of the fuel capsule exposed
to varying stress and temperature.

The measured value of life to a prescribed
creep criterion in the input creep data.

The value of 1life predicted by the fitted
creep life function for the values SIGMA(I)
and T(I).

An imposed upper limit on the value of THET
in THETAC.

The lower limit of the integral in DR, either
zero or TAU.

Temperature of the gas when the capsule is
sealed.

The initial steady state temperature of the
helium gas in the fuel capsule as calculated
in DR.

The instantaneocus value of the steady state
temperature of the inner wall of the primary
structural material.

The initial steady state temperature of the
inner wall of the primery structural material.

The imposed initial steady state of the outer
surface of the capsule. In THETAC this is
the initial temperature in the time period
zero to TAU.

In subroutine THETAC the imposed initial
steady state temperature of the surface of
the fuel capsule in the time period TAU to
THETA expressed as the temperature at zero
time (i.e., at full thermal power).
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V(I): I-=19
Vo
V2

W, WH
WEL(K), K = 1,19

WT

Wl

We

W3

X(I)) I= 1,9

X(K)l): XX(K)l): K=1,19

XID
XM, m
XK0, YK, H

Xk(1), I =2,8

XK(9)

XK(10)

Xh1

L6

The initial steady state temperature of the
surface of the capsule assuming that it be-
comes buried in an infinite medium of con-
ductivity XK(10) at zero time.

Volume of region I of the capsule.

Volume of the void region.

Volume of the fuel region.

The specific thermal power function that is
to be maximized (W1, W2, or W3).

The increment in the variables AIF(K) in
calculating WH.

Weight of the fuel capsule.

Thermal power of the capsule per unit of
projected aresa.

Thermal power of the capsule per unit of
volume of a circumscribed rectangular
parallepiped.

Thermal power of the capsule per unit of
weight.

Thickness of region I of the capsule.
An increment in the variable AIF(K).

The overall length-to-diameter ratio of the
capsule.

A fitted constant in the creep life function.
A fitted constant in the creep life function.

Thermal conductivity of region I of the
capsule.

Thickness of the capsule bushing (see Fig. 2).

Temperature averaged thermal conductivity of
the infinite medium in which the capsule
is immersed.

The imposed lower limit on the thickness of
the primary structural material of the
capsule.




L7

Xhy The imposed upper limit on the thickness of
the primary structural material of the
capsule.

YK See XKD.

YSQ The square of the vector y, which is the
function minimized in MAX.

M Atomic weight of the alpha-emitting radio-
isotope.

Capsule Regions (Fig. 2)

Helium

Inner fuel liner
Radioisotope fuel

Outer fuel liner

Primary containment wall
Diffusion barrier

Gas gap

Corrosion barrier

Radiant coating

W O 1 OV Fw D+ O

Fuel spacer

]
o

An infinite heat conducting medium
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APPENDIX B
Example Problems

Bl. MOPT =1

This sequence is used to generate constants in the creep life
function for 1 percent strain in the alloy FS-85. A photograph of
the output is shown in Table Bl. The creep data are the 28 data points
(K = 28) reported by Stephenson.16 The ultimate strength at room
temperature (SIGU) is taken to be 80,000 psi. A moderately large value
of 2.0 is chosen for the constant GAMMA to provide a rather abrupt
change in the behavior of the function in the transition range. Shown
on the second and third rows of the output are the computed constants
(ALPHA, XM, XKO) and the standard errors in life and stress (SELTH, SELSG,
and RESIG) relative to the fitted function. The array of basic experi-
mental data [SIGMA(I), T(I), THETA(I)] is shown in columms two through
four of the output. Other columns list pertinent calculated results
[ IMP(TI), THETB(I), SIGB(I), DLTH(I), and DISG(I)] for each data point.
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B2, MOPT =3

This problem requires determination of the dimensions of a capsule

for 2lmC

m203 fuel having maximum power per unit of volume. Restrictions
on the capsule are: (l) The primery container material, fuel liners, and
the bushing are to be made of Hastelloy N. (2) The fuel liners and
bushing are to be 0.010 in. thick. (3) The outer surface temperature of
the capsule is not to exceed 2100°R if the capsule becomes buried in dry
sand [XK(10) = 0.0167] immediately after incapsulation. (4) The capsule
is to be designed such that the probability of rupture in 5 years is
0.001. This condition (see Sect. 4) is approximately satisfied by design-
ing for rupture in 5 years with a stress safety factor of 2.0. (5)

0.05 =X(4) 0.5, 0.01 =R(3) = 3.0.

The input data for this problem are tabulated in the first 19 rows
of the printed output (Table B2). Initial estimates of the variables R),
X(2), and X(4) are 0.3, 0.1, and 0.16, respectively. In this problem, it
is chosen to use only outer iterations in the MAX calculations (IMOST = 0).
The variables and their increments for use in this calculation are so
small that inner iterations would sometimes fail because of loss of
significance (the IBM 360/75 carries only seven significant figures in
this program).

The minimum value of YSQ (57.36) for which the constraint (D = 1.0000)
is satisfied and W is meximum (59.15 Btu/hr'in3) occurs in iteration
number 48 (M = 48). The iterations that follow produce the same computed
values indicating that ¥SQ is trapped at elther a stationary point or an
absolute minimum that may be obtained with the current set of variables
and their increments. Calculations with higher and lower starting
estimates of X(L4) indicated that this solution provides maximum power
within the range of interest in the variables R(3) and X(4). The last
array of computed values in the output is the same as in the last
iteration produced by MAX, indicating that LIMIT did not call DF because
R(3) and X(4) were within the preselected limits.
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Table B2
T8 = 210C.0 A= 1454.0 ETA = (.4 BETA = 0.0
JA = 0,0 C = T.00 G = 1.00 GARNHA = Z.00
RR = 18520.0 E = 1.000 PS = 0.0 TS %.560.0
- UVa 885 IR = P = 500.0 VAl = U0
LANBOA =  0.43680E-05 N = 100 NN = 100
noey = 3 NEAX = § NG = 2

THE FOLLOWING THREE RONWS ARE THE CONTENYS OF THE X, P, AND XK ARRAYS

0.0100 0.0 C.0100 0.0 0.0 0.0 0.0 0.0 0.0
0.32%50 0.3860 U.3250 U.3250 0.0 0.0 0.0 0.0 0.0
0.1000 2.0000 2.0000 1.0000 1.0000 1.0000 1.0000 0.0100 0.0167

ALPHA = 0.72610E C8
= . =03

YK = C.93C1CE 16

X4U = 0.500 X4L = 0.050 R3U = 3.000 R3L = 0.010

SIGU = 110000. SC = 2.00 SU = 2.00 PHI = 0.10E-04

= . - LRU =0, TOE-05 UElXZ = U.TOE-US UELX&d = U.TOE-05

TAU = (.0 181 = 2100. 182 = 2100, X0 = 5.0

R0 = 0.3C0 X{2Y = 0.T00 X147 = 0.160 THETA = 0.4383F 05

IX = 2z NLAW = 0 NITER = 0 ITER = 50 LMOST = 0

G = 0.990 C = 1.000 CRIT = 1.00000 ALAM = 0.0
M= 1 D= 0.390253€ C1 W= 0.753760F 02 ¥YSQ= 0.157817E 06 I= 0.157817E 06 LSTOP= 0

0.395568E 03 0.358484E-C1
0.365267€ 02 0.160000€E 0C
~C.29C253€ (1 0.0
RADII ARE 0.26557 0.27557 0.31142 0.32142 0.48142 0.48142 0.48142 0.48142 0.48142
= . = . = . = . - - = .
= = . £3 P - P = - 10 LSTOP= [1)
0.6335&69E 05 0.320644E-01
=U0.592328€ GA U.T6410SE U0
=U. I91T12ZE CU U.IB7435UE C3
. - . J35101 - - . - -

L = 0.51512E 01 AV2 = 0,35996E (03 Wl = 0.67828E 02 W2 = 0.65837E 02 W3 = 0.40391€ 03 WY = 0.89119€ 00
M= 3 0= 0.114289E 0Ol W= 0.606518€ 02 ¥YSQ= 0.464751€ 13 I= 0.464751E 13 LSTOP= 0
~0.214592€ 07 0.297294€E-01

0.206227€ C6 0.163247€ 00
-0e142992E 00 -0.919341F C4
RADII ARE 0.32371 0.33371 0.36344 0.37344 0.53669 053669 0.53669 0.53669 0.53669
T = 0. = U, % Ue = U = U. = 0.



52

Table B2 (continued)

0.59154E 02 W3 = 0.38135E 03 WV = 0.99581E 00

L = 0.54344E Ol  AV2 = 0.37975E 03 Wl = 0.64293FE 02 W2 =
M= 44 D= C.1CO000E 01 W= 0.591540E 02  Y¥SQ= 0.112344E 04 2= 0.112344E 04  LSTOP= 0
. C.138723E C2  0.291225E-01 i o B
~C.305122€ €2 C.163619€ OC o
C.476337E-06 0.111302E €2
RADII ARE  0.3307C  0.3407C  0.36982 0.37582 0.54344 0.54344 0.54344 0.54344 0.564344
TLU = 0.54344E 01 7 AV2 = 0.37975E 03 Wl = 0.64293F 027 W2 = 0.59154€ 02 W3 = 0,38135€ 03 WY = 0.99581E 00
N= 45 D= 0.10C0COE CL. ‘W= 0.59I540FE 02  VYSQ= 0.I04162F 04 I= '0.104162€ 04 LSTOP= ]
=0.315254E (2 0.231225E-01
0.4TC410€ C1 0.163€18€ 0C Tt T
~C.9536T4E-C6 0.11C735€ 02 - - I - T
RADTT ARE 0.33070  0.3407C  U0.36382 0.37982 0.54344 U.54344 0.54344 U0.54344 0.5434%
L = 0.54344F 01 AV2 = 0.37975E 03 Wl = 0.64293E 02 W2 = 0.59154E 02 W3 = 0.38135€ 03  WT = 0.99581€ 00
M= 46 D= 0.100000E 01 W= 0.591540E 02  YSQ= 0.302119E 04 2Z= 0.302119E 04 LSTOP= . O
0.549556E €2 0.291225€6-01
0.1C37¢CE 01 0.163¢18E 0C N s
~0.953674E-C6 0.112239E 02 -
RADIT ARE  C.3307C 0.3407C 0036982 0.37682  0.54344  0.54344  0.54344 0.54344 0.54344
T = U.543%4E O  AVZ = U.379T5E €3 WI = U.54293E U2 WZ = U.59I54E U2 W3 = 0.38135E 03 WT = 0.99581F 00
— W= %7 C[= U.T00000E OI W= 0.59I54CE 02 V5U= O0.574727E 02 I= 0.574727€ 02  LSTOP= 0
=0.863330E CC 0. 291225E-C1 T
0. 7552CCE 0T T.I636T0E CC e o
TTTTS0.9536TAE~C6  ~  0.109567€ 02 T -
“RADTT BRE ~ 0.23070  0,34070  0.369827 0.3798Z  0.54344 0.54344  0.54344  0.54344  0.54344
L = 0.54344E O1 AV2 = 0.37975E 03 Wl = 0.64293E 02 W2 = 0.59154E 02 W3 = 0.38135F 03 WT = 0.99581E 00
W= 48 0= 0.100000€ Ol W= 0.591540F 02  ¥SQ= 0.573656E 02 = 0.573656F 02  LSTOPx 0
| -0.62USC6E 00 0.291225€-01
0.754785€ Cl 0.163618€ 00
-0.953674E-C6 _ 0.105569E 02 ) L o
RACIT ARE G.2307C C.24C70 C.36982 0.37982 0.54344 0.54344 0.54344 0.54344 0.54344
~-( & 0:54344E TI —AVZ = 0.37975€ 03 WI = U.642Z93E 02 ~ W2 % 0.5YI54E 02 W3 = 0.3B135E703 WT = 0.99581€ 00
—Ws——39 U= 0. I000C0E O W& OU.59I54CE 02 VSU= U0.573656F 0Z 7= 0.573658F 02 1STOP= 0
T T20.6286C6E TO  0.291225E-01 ° T 7 T e o o -

0.754785E €I~ 0.183618E 0C
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Table B2 (continued)

~C.553674E-06 0.109569E 02

RADII ARE €.3307C 0.24070 C.36982 0.37982 0.54344 0.54344 0.54344 0.54344 0.54344
L = 0,.543334F 01 AVZ = 0.37575E T3 WI = 0.8%293F 02 W2 = 0.59154F 02 W3 =0.38135E 03 WT = 0.39581TE 00

M=" " "5C 'C= "0.100000¢€ 01 W= 0.59154CE 02 v3Q=" 0.573656F 02 1= 0.573656E 02 LSTOP= 0
T =0.628SC6E 00 T 0.291225e-01 B T T

0. 754785F C1 C.163¢18E G0

-0.953674E-C6 0.109569€ 02

407C C.36%82 0.37982 0.54344 0.54344 0.54344 0.54344 0.54344

"RADIT ARE 0.3307C 0.3 B
= 0.37975E C3 Wl = 0.64293E 02 W2 = 0.59154E 02 W3 = 0.38135E 03 WY = 0.99581E 00

L = 0.54344E Cl AV2

M= 51 D= 0.100000& 01 W= 0.591540E 02 Y¥SQ= 0.573656E 02 Z= 0.573656E 02  tSTOP= = 0

-0.6289C6E G0 0.291225E-01

C.754785€ C1 0.163€18E CC

~C.953674E-C6 0.10956SE C2

RACI1 ARE 0.33070 0.34070C C.36982 0.37982 0.54344 0.54344 0.54344 0.54344 0.54344
L = 0.54344E 01 = AVZ = 0.37975E C3 WI = 0.64293E..02 ~ W2 = 0.59154E 02 W3 = 0.38135E 03 WY = 0.99581& 00

- - B . 0.54344% 0.54344%4 0.5434% 0.5434% 0.5434%
L = 0+454344E C1 AV2 = 0.37975€ C3 Wl = 0.,64293E 02 W2 = 0.59154E 02 W3 = 0.38135E 03 WT = 0.99581E 00
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MOPT = L

We will illustrate the use of this sequence to calculate the rupture

life of an alloy exposed to a constant stress rate, a problem different

from the normal one of calculating the life of a capsule. The alloy T-222

is subjected to & constantly increasing stress rate, o, of 3500 psi/hr

at a temperature of 24L60°R. The input constants (some are redefined),

printed on the first 14 rows of the output (Table B3) are determined as

follows:

1.

10.

Iet TA = A = BETA = DELTA = PS = TA = NMAX = NQ = TAU = RO = O.
Iet ETA =C =G =TS =X(I), I =1,9 but# 4 = P(I), I =1,9 = XK(I),
I=2,10but# 9 =5C =85U =XID = 1.0.

The constants GAMMA, SIGU, ALPHA, YK, and XM are chosen from a fit
of T-222 rupture data.

Iet TAl = T81 = ZM = 2460. ZM cancels TAl in the expression for
SIGT.

Choose THET such that ¢-THET < SIGU; therefore, THET = 25.

Choose IAMBDA such that ILAMBDA'THET < 0.0l1; therefore ILAMBDA = lO-h.

This causes the expression [1 - EXP(-LAMBDA-T)] to produce IAMBDA-T.

Choose H lOLL to cancel IAMBDA.

i}

Iet RO = 0 and XK(9) = 3; therefore R(3) = XK(9) and VO = O,

Iet X(4) = 2 and E = 2,125, This causes E to cancel the term
[R(4)® +R(3)PI/IR(ME - R(3)°1.

let RR = ¢ = 3500.

3 -2 6

Iet PHI = 1o'u, Q = 10™°, DEITH = DEIOME = 10™°, and THMAX = 10°.

The computed value of THETA, determined in five iterations, is

19.33 hours; this compares with an experimentally determined value of
19.1 hours, The value of OMEGA is one since THMAX was not exceeded.
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10 3000001°0 = VI3IWO 20 320eEs51°) =V1i3HL
10 3%9€0001°0 10 349€0001°9 22 3810¢€¢e61°0
e el 10 365€£8201°0 J0 _365£8201°0 ¢0 31258¢61°0 . __
10 3€T1€821°0 10 3el11€821°0 20 35%99861°0
10 A£E6ES22°0 1D JEEHEGZ2°0 20 39270112°0
10 3820%115°0 10 38L0%115°0 20 3059¢€622°0
[ . 20 31669.21°Q 20 L669221°0 20 300000¢2°D .
%0-3€069°0 = WX €1 JEILH*0 = NA L0 35€96°0 = VHdIW
e L ¢0 30s82°0 = 13HL _ 000°Z = (%)X _Q00°1 = (Z)X .
0°0 = 0¥ 000°T = 07X 0°09%2 = 181 0°0 = Nv1
L0 J001°0 = XWiWHiL 10-301°0 = JWDI3Q 10-301°0 = HAJ3Q0 20=301°0 =B
€0-30T°0 = IHd c0*1 = NS 00°1 = 3§ *0020¢€1 = N9IS
0000°1 0000°¢ 0000°1 0000°*1 0000°1 0000°1 0000°1 00230°1 0000°1
0000°T . ... 0000°%T ___ QQQO°T1 00Q0°1 0000°% 0000°1 ——-0000°T  0200°1 _. __.0000°1
00g0o°1 0000°1 0000°1 0000°*1 0000°1 00002 0000°1 0000°1 0000°1

SAVHYY AX OGNV *d “X 3HL 40 SINIINID 3IHL 34V SMDY 33dHL ONIMDI104 3H1

0 = ON 0 = XVAN ”» = 1dONW

001 = NN 001 = N €0-300001°*0 = VO9WV)

0°09%2 = 1yl 0°0 = yi 0°0942 = WZ Q00°00207F = N
0°1 = S1 0°0 = Sd 621°*2 = 3 0°006¢ = ¥y

00°2 = VWWV9 001 =9 00°1 = 9 0°0 = ¥173Q

0°0 = vi139 0°T = vi3 0°0 = v 0°0 = 81

¢d 9TqBL
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APPENDIX C

List of CAPSUL Program
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PROGRAM CAPSUL

DIMENSIDN SIGMA{500), T{500)s THETA{500), THETB(500)s SIGB(500)
RFAL LMP{500), DLTH{500), DLSG{500}

COMMON/CCON/ Ke SIGUs ALPHA, YK+ XMy PHI, Q, DELTA, DELOME, THMAX,
1TAU, T8B1, T82. XLDs RO« R(8)}s GAMMA, RR, E, PS, TS, Hs ZMs+ LAMBDA,

?2TA. NOs X{9)s P(9)s XKE{10), A, ETA, BETA, TNIT, TERM, T8, SCs SUs
3Ne NNo DELTHs AV2e NMAXs L, Wl, W2s W3s THET, WT, TAl

REAL LAMBDA, L
COMMON/MAX/TXeMoALAMJALF({19)+C+,CSQ.DHoWH

EQUIVALENCE {(XK{1),0MEGA)
COMMON/LIM/X4U. X4Ls R3U, R3L

COMMON/NIC/CRIT, NITER, ITER
COMMGN/DELS/DELRO. DELX2, DELX4

CHEx

CCMMON/CONVG/XX119+41 )+ RKLMOSTLSTOP,JWAY,G
VARIARLES USED IN THIS PROGRAM FOR DECIDING OPTIONS

MOPT CECIDES ON SEQUENCE TO USE
MOPT=1 LSTSQ IS USED ALONE

MCPT=2 LSTSC. MAX, LIMIT, AND DF ARE USED
MOPT=3 MAX. LIMIT. AND DF ARE USED

MOPT=4 THETA ALCNE IS USED
NMAX DECICES CGN SEQUENCE TO USE IN MAX

NMAX=1 THREE INDEPENDENT VARIABLES
NMAX=2 X{4) IS SPECIFIED

NMAX=3 R{8) IS CCNSTANT
NMAX=4 RE3) IS CONSTANT

NMAX=5 RZFRO IS TO BE COMPUTED
NQ CFCICFS FUNCTIGN TO BE MAXIMIZED

NQ=1 POWER/PROJECTED AREA
NQ=2 POWFR/VOLUME OF CIRCUMSCRIBED RECTANGULAR PARALLELEPIPED

OO D

90

NQ=3 POWER/WFIGHT
REAC{S5C,100) MOPT. NMAX, NG

NNN=1]
IF(MCPT-1) 13.10,91,

[og 2 23
91

COMMGN CONSTANTS FOR MOPT=2,3,AND 4 FOLLOW
RFAD{504111) GAMMAJRReE+PS+TS+Hs.ZM,TA

READ{S0+4111) T8+,AETAVBETALDELTA.C+GTAl
READ{5C+.150) LAMBDA+N,NN

100

READI{50.112) (X{T1)eI=1eS) o {PUI}oI=149) o (XK(I),I=2,10)
FORMAT(312)

11¢
111

FORMAT{3E10.0)
FORMAT(8F10.0)

112
150

FORMAT(SFB.0)
FGRMAT(E10.3, 213)

WRITE{51.892) T8, A, ETA, BETA, DELTA, Cs G, GAMMA, RRy Es PSy TS,
1 He 7Ms, TA, TAl. LAMBDA, N+ NN

892

FORMATI®IT8 = F7.1+5Xe"'A =¥ ,F10e1e5Xe?ETA =*F5.1+5X+'BETA =7,
1FB8ebe/e DELTA ='F8.445Xs"'C ="' 4F64245X+"'G ="yF6,2+5Xy*GAMMA =¢,

2F5.2¢/7/¢% RR =',F1Cale5XsE SO FTe345Xs'PS =V ,F6.2+5X,'TS =¢,F6.1,
3/.? =8 F12.345%X9%IM =V, FT4145Xe?TA =, FT7.145X,*TAL =*4F7.1,
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4/¢% LAMBDA =%+E15.5.5Xe*N =?,14+,5X,% NN =*,14)
WRITEFI51.890) MOPT.NMAX,NQ
103 FORMAT(BHOALPHA =+E15.5+/45H XM =4E15.54/+5H YK =,E15.5)

890 FORMAT(*OMOPT ='413,5X+"NMAX =*,13,5X,*NQ =*,13)
WRITF{51,891) (X{I)el=1¢9)edP{I)sI=149)(XK(I)s»I=2,10)

891 FORMAT(*OTHE FOLLOWING THREE ROWS ARE THE CONTENTS OF THE X, Ps AN
10 XK _ARRAYS*.//.19F12.4))
GO TO (10.10.20.30), MOPT
C¥%x%x CONSTANTS FOR LSTSQ ROUTINE

10 READ(50,101) Ky SIGUs, GAMMA, (SIGMA(I)+T(L1),THETA{I),I=NNN,K)

IF(K.FQ.0) GO TO 95

101 FORNAT (I13,2F1C.04/(3F20.0))

CALL LSTSO (KeSIGUsGAMMA(STIGMALT,THETA+ALPHA ¢ XM4XKO)
SFL TH=0.0
SFLSG=0.0

RFSIG=C.0
DO110S I=1,K _ o

EX=1.0/XM/T(1)
THETR(1)=1.0/XKO*{ .01 ¥ALPHA/STIGMA( 1) /SIGU) *REXK[SIGU**

1 GAMMA-STIGMA( T )**GAMMA) %% (EX/GAMMA) #1000, %*EX
SIGRIT)= ((ALPHA**GAMMAXSIGU**GAMMA)/ (ALPHA¥XGAMMA + STGUX**GAMMAX

LOXKORTHETA(T )} &= ( GAMMAXXMET (1)) ) )*%(1.0/GAMMA)
LMPLT)=T(T)*ALOG1C(XKO*THETA(T)}
DLSGI{TI)=ALOGIO({SIGMA{TII/SICGB(I))
SELSG=SELSG+{DLSG([))*%*2

DLTH(T)=ALCGLO(THETA(IL)/THETB(I)}
SEL TH=SELTH+(DLTH(I)}**2

RESIG=RESIG +{(SIGMA{T)-SIGB{I))**2)/SIGB(I)*%2
1109 CONTINUF '

SELTH=SERTISELTH/(K-3.0))
SELSG=SORT(SELSG/{K-3.0))

RESIG=SQRT(RESIG/(K=-3))
WRITE(S51.522) K, SIGUs GAMMA., ALPHA, XM, XKO, SELTH, SELSG,

IRFSIG«{T+s SIGMA(TI)s TA{I), THETALI}s» LMP(I), THETB(I), SIGB(I},
2DLTH{I), DLSG(I)e I=1eK) o I
522 FORMAT( 1K =%414.5X*SIGU =2 3F9.0,5Xy'GAMMA =",F5.2 4/
1 ALPHA =9 4FE15.645X9 XM =1 4E15.6¢5X¢"XKO =" 4E1546,4/y
2% SFLTH =% ,E15.645X¢*SELSG =%9EL15.645X+*'RESIG ='4E15.649//»
3% 1'.T6H¢*'SIGMACTI)®*4T164'T(1)*',T23,*THETA(I)*,T38,*LMP{I)",

4T51 S THETB (I ) s T66+SIGB(I) " T80« OLTH(II?oT944*DLSG(I) 47/
5(14eFGe0eFTa00F112202X0E1205¢2X0E12e502XsE12e542X¢EL12.502XsE12.5))
NNN=K+1
GO 70 10

S5 GO TO (90.25).MOPT
C#x¥% CONSTANTS FOR USE IN MAX

20 READUS5C,110) ALPHAYK XM
WRITF(51.103) ALPHA, XM+ YK _

25 CONTINUE
RFACIS50,111) X4Ue X4L+ R3Us R3L
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WRITE(S51+126) X4Us X4le. R3Us R3L

126 FORMAT{'0X4U = eF6.3¢5X+¥X4L =" 1F6.3+45X4'R3U =*',F6.3,5X4*R3L =1,
1 Fé6.3)

READ(50,241) SIGU., SC. SU, PHI+ Q, DELRO. DELX2+ DELX4, TAU, T81,
1782+ XLDos RO« X(2})e X{4)e VHET

241 FORMAT(4E20.0)
WRITE(51,242) SIGU, SCe SU, PHI. O, DELRO., DELX2, DELX4, TAU, T81,

1T82. XLDs RO, X{2)s X{4)e THET
242 FORMAT(*0SIGU ='F10.0+5X+*SC =*9F5.2¢5X+*SU ='F5.2,5X4'PHI =%,

1E1Ce?+/¢* O ='4FE10.2+5X+*DELRO =%,E10.2+5X+'DELX2 ="E1l0e2+5X,
2'DFL X4 =%FE10.24/+* TAU ="4E11e3¢5X+*'T81 =",FB8,0+45X,*T82 =*,FB.0+5X

3VXLD ='F6.1'/o' RO ='9F6.305X"X(2) ='9F6¢395X"X(4, ='yF6.395X9
4'THETA =%,E12.4)

RFAD(50.402) IX, NLAM, NITER, ITER, LMOST. G+ Cy» CRIT, ALAM
4072 FORMAT(514./,4F10.0)

WRITE(51.4C3)1IX. NLAM, NIIE#. ITER., LMOST,s Go Co CRIT, ALAM
403 FORMAT(?0IX ="+14+5Xs*NLAM =, J4+5X+*NITER ="414+,5X,'ITER ="14,5X,

LI MOST =%,1443/% G ="F6.3¢5Xe%'C =*F6.3+5X+'CRIT =tF8.5+5Xy YALAM =1,
2 F6.3)

90C NMAX1=NMAX
JAM=Q

CALL VSU
61 CALL DR

JAM=JAM+1]
IF(JAM.GT.100) GO TO 66

IFIDH.GT.4.0) 62,63
63 TF(DH.LT.0.3) 64,65

66 WRITF(S51+44) ROy (RIIVeI=148)s Ls AVZ2s Wly W2+ W3, WT
GO 10 90

&2 X{2) = Ca85%X(2)
CaLL VSu

GG T0 61
64 X(2) = 1.05%X(2)

X{4) = 0.95%X(4)
CALL VSU

GO TO 61
65 CONTINUE

CALL MAXINLAM)
NO1=NC ¢ NQ=0

CALL WR
CALL LIMIT

NC=NQ1
WRITE{51+44) ROs (R{I})eJ=148)s L+ AV2s Wl, W2e W3, WT

4 FORMAT('ORADII ARE'49F10.5+/+" L =',E12.5+3Xs*AV2 =%,E12.5,+3X,
10 Wl ='eF12.543Xe W2 =% eF12.5+3Xe"W3 =1'4E12.543X,'WT =*,E12.5)

TFI{NMAXLEQC.NMAX1) SC.900

Cx%%  THF FOLLOWING ARE THE CONSTANTS USEC IN CALCULATING THETA

30 READ(S5C.110) ALPHA,YK.XM
RFAL(50.210) SIGUes SC, SU. PRI+ O, DELTH, DELOME, THMAX, TAU, T81,
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L. XLDs RO. X{2)s X(4) THET
210 FORMAT(4F20.0)
WRITF(51,211) SIGY. SC, SU., PHI. Q. VELTH, DELOME, THMAXs TAU,

1 Tl XLBs RCy X(2)s X{4)s THET, ALPHA. YKs XM
211 FORMAT('0SIGU ='F10.0,5Xs1SC =93F5.245X,¢SU =*,F5,245X,PHL =1,
1 FI0.20/6t Q =% F10.205%s *OFLTH =1 ,F10.2,5Xs '*DELOMF =',E10.2,
C25Xa ! THMAX =', E10.3+/,% TAU ="', E10.3,5X,'T81 ='F8.1,5X,"XLD =",
IFT7.305%XeVRC =4F6430/0" X(2) ="' yF6.345X01X(4) =*4F6.3+5Xs ' THET =1,
4 E172.3¢/0" ALPHA =" E12.4+5Xe YK =7 4E12.445Xs "XM =*4E12.4)
CALL THETAC
. WRITF(51,72) THET.CMEGA =
72 FORMAT('OTHFTA=*F15.645Xs "UMEGA ='E15.6)
w60 TO 90
13 END

SURROUTINF LSTSG (KeSLGUGAMMA(SIGMALT,THETAALPHA, XM, XKO)
. BIMENSTON SIGMAL5CI), T(500), THETA(5G0), Y(500), Z£(500),
1 AC3.3). X(3)
. SIG = SICU*%GAMMA
DO 10 T=1.K

SIGT = SIGMA(T)**GAMMA
Y{T) = ALOG(SIG*SIGI/(SIG-SIGI))
10 2810 = TLI)*AaLOG(THETA(I))

no 20 1=1.3 ¢ x(I) = C.C
e ... B0 20 J=143
20 AlT.0V=0.0
DC 30 I=1,K

A(142) = Al1,2) + 1(1)
A(1.3) = AL143) + Z2(1) e
A7.2) = AL2.2) + T({1)%%2

 A(2.3) = A(2,3) + T(Ly*Z2(1) -
A(3.3) = A(3.3) + 7(1)%%2
x{1) = x(1) - Y(I)
X(2) = x(?2) - T(Ihb*Y{1)

30 X(3) = x(3) - Z(I)*Y(I)

AC141) = =K & Al241) = =A(1,2) .
— _AL3.1) = ~AL1.3) 8 A(3.2) = A(2,.3)

CALL MATCLAWXe341.CFT43,.3)

Al=x(]) $ AP=Xx(2) $ A3=x(3)

ALPHA = EXPUAL/GAMMA)

XM= AJ/GAMMA

XKC=EXP(A2/GAMMA/XM)

RFTURN

FNE

SURROUTINE CUONVERTINMAX X eALFvRoRO)
CIMENSION X(9)s ALF(19).R(8)
GO TGO (10+204,30440450) «NMAX

10 RO=ALF(1)
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X(2)=ALF(2)

X{6i=ALF(3)
RETURN

20

£ 10

_X(2)=ALF(2)

RO=ALF(1)

RETURN
X{2)=ALF(1)

X(4)=8LF(2)

RO=R{B8)-XT1)=X{2)—X{3)1-X{4)-X{5)~-X(6)-X{7)-X(8)

40

RETURN
X{23=ALF(1)

X{4)=ALF(2)
RO=R(3)=X{1)=Xx{2)-X(3)

5C

RETURN
X(2V=ALF{1)

X{4)=ALF(2)
CALL RZFRQO

RETURN
ENC

SURROUTINE WR

COMMON/MAX/ TX oMo ALAMVALF{19)4CWyCSQ,DHWH
CCMMON/CEN/ Ko SIGU. ALPHA, YKo XM, PHI,

Qs

DELTA,

DELCHME,

THMAX,

1TAU. TBI. TB?2+ XLDs ROs RUB)e GAMMA, RR,
2TA« MNCo _X{9)s P({9)s XK{1l0)s A, ETA., BETA,

E

PS,
TNIT,

TS,

Hoy

TERM,

M,
T8,

LAMBDA,

SCy» SU,»

INe NNo DELTH. AV2. NMAX, L+ Wle W2y W3y

REAL LAMRDA, L

THET,

WT,

TAl

CALL CONVERTINMAX XsALF,R,RO)
R{1)I=RO+X(1)

40

0O 4C I=2.8
RIETI=R{T-1)+x(T)}

Xt 27=2.0%(XLD-o575)¥R{IBI-o5% (1 O+R{41)-2.0%{X{1)+X(3))

AV2=A%X]1 2%¥3.1415G%{R{2)*%2-R(1)%*%*2)

GO TO (1C«2G«3C)H NG

10 WH = AV2/{4.0%XID*R(3)%(R(8) + BETA))

IFINC.NF.0) RETURN
Wl=WH

20

WH = AV2/(8.0%XLDAR(8)*{R(8) + BETAIX(R(R) + DELTAY)

TE(NQ.NF.Q) RETURN

30,

W2=Wk
CALL WHT

wWH = AV2/WT
W3=wWH

RETURN
END

SUBROUTINE WHT

CONMMCN/CON/ K. SIGU. ALPHA, YK+ XM, PHI.

 1TAU. TBls TR2. XiDs RGws RI8)s GAMMA, RR,

Qv
Eo

DELTA,

PS,

TS,

DELCME,

Hy

M,

THMAX,
LAMBDA,
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?2TA« NQ. X(9)s P(9)y XK(10)s A, ETA, BETA, TNIT, TERM, TH, SCs SU,

IN. NNo. DELTHs AV2, NMAX, L+ Wls W2s W3, THET, WT, TAL
RFAL Lol 2,L44VI(S)

L = 7.0%XLD*R(8)

L4 2.C¥%(XLD ~
L?

5151 %R
+ 4)

J*¥R(8)
R(

) = 2.0%(X(1) + x(9))

il

L4 - <5%(1.0
R{1) = RC_# X{1)
0O 6C I = 2.8

60 R(I14 = R(I=1) + X{I)
VO = 3.1416%RUF%2%L2 + 2.4CS%((R(3)-XK(S)1%%3) + 1.5708%((R(3)~
1 XK(9))#%2)%(1.C+R(4)) o o
V(1) = 3.1416%(L2 + 2.0%X{1))%(R(1)#%2 - RO**%2)

VI2) = 3.1416%L2%{(RI2)%%2 - R(1)%*%2) ,
VE3) = 3.1416%(L2 + 2.0%X(1))R(R(3)*%2 — R(2)*%*2)
Vi4) = 3, 1416%L4FKI4)¥%D + 2.409%R(4)%%3 - V(1) = V(2) - V(3)
1 — E.PH3*R(3)*%2%X(9) - VO

_VL5) = 3.1416%L4%(RI5)E%2 — R(4)¥%2) + 2,409%(R(5)*%3 - R(4)**3)
VI6) = 3.1416%L4%(R(6) %2 — R(5)%%2) + 2,409%[R(6)%%x3 - R(S)*¥*3)
VIT) = 3.1416%(L —.575%R{8)IX(RITI®%2 - R(6)¥%2) + 3.1416%R(T)¥*2

1 X171 + 1.204%(R(T7)8%X3 — R{6)%%3)
VIB) = 3.14l6%(L —.575%R(8) IXIR(BI**2 ~ R(TI**2) + 3.1416%R(B)**2
1 %X(8) + 1.204%(R(B)%%3 — R(T)*%x3)
VIS) = 6.283%R(3)*#2%X{9)
WT = 0.0
—...D0 70 _1=1.9 —
70 WT = WT + VII)*%P(])
RETURN
END

SURROUTINE VSU
COMMON/CON/ Ko SIGUs ALPHA. YKos XM, PHI, Q, DELTA, DELOME, THMAX,
1TAU. TAl. TR?, XLDs ROs R{B)s GAMMA, RR, Es» PS, TS, H, IM, LAMBDA,
2TAe NCo X{9)e PLY)e XK{10)s Ase ETA, BETA, TNIT, TERM, THe SC, SU,

3N, NNe DFLTHe AVZ2. NMAX, Ly Wl, W2e W3, THET, WT, TAl

1(19)
 COMMON/MAX/IXeMoALAMALF(19) 4G oCSGeCHoWH
COMMUN/DFLS/DFLRO. DELX?, DELX4
TERM=THFT$TNIT=0.0
GO TO (1042043040450 +NMAX
10 DFI (1)=wWEL(1)=DELRO
BEL{2)=WFEL(2)=DELX?2
DEL(3)=wFL(3)=DELX4
ALF(1)=R0
ALF(2)=X(2)
ALF(3)=X(4)
1x=3
RETURN
20 DFI(1)=WEL{1)=DELRQ
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DEL{?2)=WFL{2)=DELX2

ALF(1)=R0O
ALF(2)=X(2)

IX=2
RETURN

30

DEL(1)=WEL{1)=DELX2
DELEZ2)=WEL{?}=NELX4

ALFLLI=X(2)
ALF({2)=%{4)

IX=?
RETURN

40

DELLI)=WEL(1)=DELX2
DFI(2)=WEL{2)=DELX4

RO=R{3)=X(11-Xt2)}-X{3)
AlLF(1)=X(2)

ALF{2)=X(4)
Ix=2

50

RETURN
DEL{I)=WEL(1)=DELX2

DEL{?2)=WEL{2)=DELX4
ALFil)=Xx{2)

AL FI2)=X14)
I1X=2

RFTURN
END

SURROUTINE RZERO

COMMON/CON/ Ks SIGUs ALPHA, YK, XM, PHI, Q. DELTA, DELOME, THMAX,
1TAU, TBl. 7824 XLD+ ROs» R(B)e GAMMA., RR. E, PS, TSy Hs Z+ LAMBDA,

2TAs NQs X{9)s P(9), XK(10), A, ETA. BETA, TNIT, TERM, T8, SC, SU,
3Ns NNe DELTH, AV2e NMAXs L, Wls W2+ W3y THET. WT, TAl

REAL L2

C*%% SUBROUTINE CALCULATES A RO _BY NEWTONS METHOD

M=0
HSIN = ALOGIXLD + SQRT(XLO**2 + 1.0))
B = 4.0%XK(10)*XLD*{T82 — TA)/A /HSIN
RO = B/{4.0*X{2)*{XLD-.825)) - X{l) - X(2)/2.0

35 R{B) = RO
Do 10 T=1.8

10 R(B) = R{8) + X(T)
L2 = 2,0%(XLD — .575)%R(8) — .5%({1.0 + RO + X{1) + X{2) + X(3) +
1X{4)) — 2.0%{X{1) + X(9)})
V2PIE = L2%{2.0%X{2)%(RO + X{1)) + X{2)*%2)
TFCABSU(R¥R{B)-V2PIE)/B/R(8)).6T.1.0E-6) 30, 31

30 RO = RO —(B*R(8)-V2PIE)/{R-2,0%(XLD=-e825)%{2.*%X{2)*(RO+X{1)}+

1X{2)%%2) — 2.0%X{2)%L2)
M=M+1

IF{M.GT.10) GO TO 31
Gg 10 35




6L

31 CONTINUE
IF{RO.GT.0.0) RETURN
RC=.20
RETURN
END

SUBRCUTINE LIMIT
COMMON/LIM/X4Us X4Ls R3Us R3L
COMMON/CON/ Ko SIGU. ALPHAs YK+ XM, PHI, Q. DELTA, DELOME, THMAX,
1TAU. T8l T8B2. XLDs RGs R(8)s GAMMA, RRy Es» PSy T1Ses Hs Ly, LAMBDA,
2TA. NQ+ X19)s P(9)s XK(10)s A, ETA, BETA, TNIT, TERM, T8, SCs SU,
3N+ NNe DELTHe AV2. NMAXe L» Wle W2s W3, THET, WT, TAl
GO TO (10+20430)4NMAX
10 TF{X(4).GT.X4U) 40,50
40 X(4) = X4l $ NMAX = 2
RFTURN
50 TF(X{4).LToX4l) 6C470
60 X(4) = X4L .§ NMAX= 2
_ RETURN = _
70 TF(R(31.GT.R3U) HC. 90
80 R(3) = R3U_$ NMAX = &
RETURN
90 IF{R(3)1.LT.R3L) 1CC. 110
100 R(3) = R3L § NMAX=4
110 RETURN

20 IF(R{31.GT.R3U) 120, 130
120 R(3) = R3U $ GU TO 160
130 TF(R(3).1LT.R3L) 140, 150
140 R(3) = R3L $ GU IO 160

150 RFTURN
160 RO = R(3) — X(1) - X(2) = X(3)

CALL DF
RETURN
30 TF{X(4).6T.X4U) 170,180
170 xt4) = x4 & GO TQ 210
180 TF{X{4)..T.X4L) 190,200
190 _Xx{4) = X4l 8 GO T0 210
200 RFTURN
21C CAtLL DF
RETURN
__END

— . SURRCUTINE LF
COMMON/MAX/IXeMoALAMVALF(19)4CsCSQe0HWH
COMMON/CON/ Ko SIGU. ALPHAs YK+ XMe PHE, Qo DELTA, DELOME, THMAX,
1TAU. TRls TR2. XLD+ RO« R(8)y GAMMA, RRs Eo+ PSy TS+ Hsy Zs LAMBDA,

_ _2TAs NQe X{9ds P(9), XK(10)s A, ETA, BETA, TNIY, TERM, T8, SC,» SU,

3Ne NNo DFLTH., AV?. NMAX, L+ Wle W2y W3, THET, WT., TAlL
. COMMON/DELS/DELRGO, DELX2. DELX4




33 CALL DR

65

C1=0H
1F(ABS(D1-1.0).LF.Q) 30, 31

31 xX(?2) = x{?2) + DELX2
JCALL BR B

X{2) = X{?2) - DELX2 - (L1-1.0)/(DH-CLI*DELX2
GO TO(10.10433) +NMAX

10 RO=R{3)=-X{1)=-X(2)-X(3)
GO _T0Q 33

30 RFTURN
END

SURRGUTINE THETAC

COMMON/MAX/TXaMoALAMZALF(19)+CsCSQsDHewWH
EQUIVALENCF (XKf{1l),.O0MEGA)

COMMGN/CCN/ Ko SIGU. ALPHA, YK+ XMe PHI. O, DELTA, DELOME. THMAX,
1TAU. 781, TB2, XLD, RO, R(B)y GAMMA, RR, E, PS, TS, H, ZM, LAMBDA,

2TA« NGo X{G)y P({9)e XK(10)}, Ay ETA, BETA, TNIT, TERM, T8, SC, SU,
3Ny NNo DELTHs AV2, NMAX+ Lo Wle W2, W3, THET, WT, TAl

RFAL LAMPOA. L
NSTGR=N $ T80=T8

TAGC=TA
N3=04=TNIT=0.0
L=0

OMEGA =1.0

SC1 = SC ¢ SuUl = SU
TERM=TAU $ N=NN

TF(INIT.EQ.TERM) GO TO 10
CALL DR

10

D3 = CH
INIT=TAU 8 T8=T81

20

TA=TAL
TERM=THET $ N=NSTCR

CALIL DR
D4 = DH+C3

100

WRITF(51,1C0) THET.D4,DH

IF(N4.LT.1.0.AND.THET.GE.THMAX) GU TO 40
IF{ARS(D4—-1.0).LE.QC) RETURN

TFRM = TERM + DELTH
CALL BR

D65=D3+0H
THET = TERM — DFLTH - (D4-1.C)*DELTH/{(D5-D4}

40

GG T0O 20
TNIT=C.0 $ T8=T8O

TA=TAO
TERM=TAlU $ N=NN

OMEG:A1=CMEGA+UFLCME
SC=0MEGAL1%SC1 $ SU=0MEGA1*SUl



66

D3=04=0.C
IF(TNIT.EC.TERM) GG TO 41
CALL DR

£3=CH
__ SC=OMFGA*SC1 $ SU=CMEGA*SUL S
CALL OR
C4=DH
41 TNIT=TAU § T8=T81

TA=TAl

TERM=THMAX $ N=NSTCR
SC=0MFGAL¥SC] $ SU=CMEGAL#¥SUL
CAlL DR
L5=0H B
SC=0MFGA*SC1 § SU=CMEGA%SUL
CALL DR
D&=NH

,,,,,, N9=C4+06 o
WRITE(514100) TERM, D9, OMEGA
[F{ARS(N4+D6-1.0).6T.Q) 30, 31

30 OMFGA=CMEGA - (L4+406-1.0)%DELOME/(D240U5-04-D6)
L=1+1

JE(L .GTL10) 31. 4G
31_THET = TERM

RETURN
_END

SURRCUTINE LR

COMMON/CON/ Ko SIGU, ALPHA, YK, XM, PHI. Q. DELTA, DELOME, THMAX,
1TAU. T81. TB2s XLDs RQOs R{B)s GAMMA, RRy Eo PSy TS, Hs IZM, LAMBDA,
2TA. NO« X{9)e P(9)s XK(1C), A, ETA, BETA, TNIT, TERM, T8, SC+ SU,

3Ne NNo DELTH. AV2, NMAXo. L. wly W2. W3, THET, WT, TALl
COMMON/MAX/TX oMo ALAMGALF(19)4CoCSQsDHWH

REAL | AMPDA. L L2404

FQUIVAI FNCE (XKCeYK)se (AOJALA2)
_ DIFF=TERM=-TNIT . . B
TF{NMAX oNFLOJAND NGNELO) CALL CCNVERT(NMAX s XsALF+R4RC)
.. D1=SymM=C.0 & NT=1 N e .

R{1Y = X(1) + RO
110 DC &0 1=2.8

BC R(T) = R(I-1) + x(I)
DO 190 J=4.8 , -
190 SUM = SUM + L.0/XK{J)EALOCGE(R(JI/R(I=1))
12 = 2.0%(XLD —.5T75)%R(8) — 5%(1.04#R{4)) = 2.0%(X(1) + X(9))

VO = 3.1416%RCKEIEL2 + 2.406%((R(3)~XK(G))**3) + 1.5708%{(R{3)~
1 XK{SG)I*%2)%(1.C+R(4))

V2 = 3.14159%L2%(R(2)%%) - R({1)%%2)
o T40=TA{TB-TA+ARV2/6.7832/L2%SUM)

TO = 140 + AO%V2/(6.28318%L2%XK(3))*ALOGIR(3)I/R(2)) + AD/4.0/XK(2)
THR(R(2)%%2 — R{1)#%x2 — 2%R(1)¥*2%ALOG(R{2}/R(1)})
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€1 =RR/E/(VO + ETA%V2)1#(RI4)%%2 + R(3)%%2)/{R(4)%%¥2 — R(3)%%2)
€2 = T8 - TA + A2%V2/6.28318/L2%SUM
L2 = 0.0 $ N1 = N

C3=PS*(VO+ETAXV2) /RR/TS
____Ca=PL2)¥N2*H/ZM
CALL SFTFAULT(5,5HEU=-1)
DO 9C T=TINIT,TERM,CIFF
SIGT = C1*(C3 + C4%{L.0 — EXP(-LAMBODAXT)))*(TA +(T0 — TA)*
LEXP(—LAMBDAXT))
T4 = TA + C2%EXP(-LAMBDA*T)
90 D1 = D1 _+ XKO*(SCH¥GAMMARSIGUX*GAMMAXSIGT**GAMMA/ ALPHAXGAMMA/
1 (SIGU#%GAMMA — SUX*GAMMA*S GT#%¥GAMMA) ) %% (1.0/GAMMA/XM/T4)
SIGG = SIGU¥*GAMMA $ SUGA = SU*XGAMMA
3027 NPT = 1 § B2 = 6.0
DO 10 J=1.N1-1
EX=EXP(-LAMRDA%(TNIT+J*DIFF/NL))
29 SIGT = C1%(C3 + C4%(1.0 - EX))*(TA (70 — TA)*EX)
T4 = TA + C2%EX
F _=XKO*(SCHKGAMMAXSIGG*SIGTH*EGAMMA/ ALPHAS¥GAMMA/{SIGG — SUGA®
1 SIGTHXGAMMA) )&% (1.0/GAMMA/ XM/ T4)
GO TO (11.12) NPT
11 £2 = B2 + 4.G%F § NPT
12 D2 = D2 + 2.0%F $ NeT
10 CONTINUE
GO TO (300.301)NT
3CC D3=DIFF*(C1+D2)/3.0/N1 $ N1=2%N1 $NT=2 & GO TO 302
301 D2=D1+D2 $ D2=DIFF*D2/3.0/N1
IF (ABS((C2-D31/07).LT.PHI) 3C4, 3C5
305 D3 = 02 $ N1=2%Nl
IF(N1 .GT.16%N) 306, 302
306 WRITF(51,247)
247 FCRMAT(® FAILED TO CCNVERGE?)
304 DH = D2
CALL SFTFALLT(4.4REU=0)
END

2 $ GO 10 10
1

SUBROUTINE MAX{NLAM}

COMMEN/CONVG/XX{199 1) «RK4LMOSTSLSTCP+JWAY,LG
COMMON/MAX/IXe M ALAMJALF(19)sCoCSQ.CHyWH
COMMON/MATQ/AL19413)eX(19¢1)9NRyYSQ4Z
COMMGN/NIC/CRIT, NITER., ITER

CRITSQ=CRIT*%2
CSQ=C*C

NR=IX+1
M=1

4 CALL SETUP
IF(NLAM)1C.5,10

9 CALL GTALAM
c FIRST LAMBCA COMPUTED IN SUBR. GTALAM
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 ALFIETl=ALF(II4DELCT)

BO 40 1=1,1X
STORT=ALF(I)

CALL DR
CP=CH

NLAM=1
o FIRST LAMBDA FROM INPUT T
10 CALL VECT
CALL CCNVG
CALL GUTPUT - o
IF(JWAY)IL00,30,12 B
17 IF(NITER)154,15,20 ,
c TEST ON NUMBER GF CUTER ITERATION
15 IF{M-ITER)?5.25.100
C CONVERFNCE CRITERIA TEST
20 IF(7-CRITSQ)1GO,100.,15 i
25 CALL ARITH
B CALL MATGIA«X+NRe1,0ET415,19) )
M=M+]
LSTQP=0
30 CALL STFP
GG TO 4 ) L i
100 RFTURN
END MAX _ L o
SURROUTINF _SETUP
COMMON/SETUP/WeDeWFD(19) +DFD(19)+WSC{19415)+DSDI19,19)+DELL19) HEL
1019)
COMMON/MAX/TXeMoALAMGALF(19)¢CoCSQsDHyWH
€ COMPUTFS QUANTITIFES IN LABELFD COMMCN SETUP =~
CALl OR
c COMPUTE FIRST ANC SECOND DERIVATIVES OF FCN D
N=Dk

CDFDCI)=(LP=-DM)/ (2., %DEL (1))

ALF(I)=STORI-DEL(T)

OM=NH
NDSD(1e1)=(DP+DM=? %D}/ (DEL (L )x%2)
J=1

4
1
13

3

2

IFCIX=-J140.101

DSNEE.)=0DSN(J. T}
NENE S

GO TO &
STORJ=ALF(.J)

ALFLI)=ALF(JI-DFELLY)
CALL 0R
£3=DhH

ALF(J)=STORJ+BEL(J)
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CALL_ DR

D2=DH
ALF(I)=STORI+DEL(T)

CALL [R
D1=Dh

ALF{J)=STCRJ-DEL(J)
CALL DR

D4=DH
ALF{T)=STORI-DEL(T)

ALF(J)=STORJ
OSD{T1.,J)=(D1+D3-D2-D4)/{4.*CELCIV*DEL(J))

GO TG 3
40 ALF(I)=SI0RI

CALL WR
COMPUTE FIRST AND SECOND DERIVATIVES OF FCN W

W=WH
DO 60 I=1.1X

STCRI=ALF(I)
ALF{TI=ALF(I}+WEL(TI)

CALL WR
WP=WH

ALF(T1)}=STORI-WEL{I)
CALL WR

WM=WH
WEDL{I)=(WP-WM)/(2.*%WEL(I))}

WSDI{T I )=(WP+WM=2_.%W) /{WEL{ ) %%2)
J=1

24 TF(IX-J)60.21.21
21 TF(J-13)213.,23.22

213 WSD{1.J}=WSClJ.T)
23 Jd=J+1

GO TN 24
22 STCRJ=ALF{J)

AMF(JI=ALF(JI-WEL(J)
CALL WR

W3=WH
ALF(J)=STORJ+WEL{J)

CALL WR
W2=WH

ALF{I)=STORI+WELI(TI)
CALL WR

W1l=WH
ALF{J)=STORJ=-WEL(J)

CALL WR
Wa=WH

ALF(I)=STORI-WELI(I)
ALF{J)=STORJ

WSCHT o )= (WI+W3~W2-W4) /(4. *WEL{T)*WEL(J))
GO 70 23
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60 ALF(I)}=STCRI

RETURN
END

SURRCUTINE GTALAM

COMMON/SETUP/W+D«WFD{19),DFD(19),WS0{19+,19),DSD(19,19),DEL{19),WEL
1(19)

COMMON/MAX/TXeMs ALAMGALF(19)+CoCSQsOHoWH
COMPUTES AVERAGE LAMBDA FOR 1ST ITERATION

SumM=0.
DEN=0.

13 SUM=SUM+WFD{J)/CFD(J)

ND014J=1.1IX
IF{DFD(J4))13.,14,13

CEN=DEN+].

14 CONTINUE
IF(DEN)IL164.154,16

15 CALL ERRCR
16 _ALAM=SUN/DEN

RETURN
END

SURROUTINE VECY

COMMON/MAX/TXsMeALAMALF(19)+C+CSQeDHoWH

COMMON/MATC/A(19419) 4 Y{19+1)sNR.YSQ,2

AX=Y NR=IX+1
COMPUTES Y.YSO.AND 27

YSQ=0.
DO1SJ=1,IX -
Yldel)=—(WFDIII-ALAMEDFD(J))

15 YSQ=YSQ+Y{J.1)%Y(Js1)

Y{NR.1)=C-O
YSO=YSC+Y({NR, 1) %%2

2=YSQ/CSQ
RETURN

END

SUBROUTINE CONVG
COMMON/CONVG/XX(19¢1) sRKoLMOST4LSTOP+JWAY,LG

COMMON/MAX/IX+MoALAMJALF(19)+CoCSQvDOHWWH
COMMON/MATQ/AL19+19) e X{19+134NR,YSQWZ

TESTS WHETHER MCRE INNER ITERATIONS ARE REQUESTED AND COMPUTES A
VECTOR INCREMENT ONE HALF THE MAGNITUDE OF THE LAST SUCH VECTOR

(] s kel

INCREMENT TRIED, IF NEEDLED
IF(M=1) 1.2.8

1 CALL ERRCR
8 IF(LMOST.GT.0) GO TO 3
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RK=YSQ*G

JWAY=1
GO 70 100

IF{YSQ-RK)2.444
LSTCP=LSTOP+1

IF{LMOST-LSTOP)S,646
JWAY=-1

<0 T0 100
DO 7 K=1.NR

XX{Kel)=ua5%XX(Kel)
X{Kel)=aX{Kosl)

100

JWAY=0
RETURN

END

SUBROUTYINE OUTPUT
COMMCN/CON/ Ko SIGU. ALPHA, YK+ XM, PHI, Q. DELTA, DELGOME, THMAX,

1TAU, T81. 782, XLD+ RO, R(B), GAMMA, RRs E, PSs TS, Hs ZIM, LAMBDA,
2TA, NQs X(9)s P{9)s XK{10)+ABC.ETA, BETA, TNIT, TERM. T8+ SC, SU,

3Ne NN. DELTHs AV2, NMAX+ Lo Wls #2s W3, THET, WY, TAl
COMMON/SETUP/W.D.WFD(19).,DFD(19),WS0(19,19),DSD{19+19),DEL(19),

IWEL (19)
COMMCON/MATO/A(194+19)eY(19+41)eNR2YSQWZ

COMMON/MAX/TXeMeALAMJALF{19)+sCeCSQsDHyWH
COMMOCN/CONVG/ XX119+41) ¢RKLMOSTVLSTOP,JWAY,LG

1

WRITF (511 )MeDsWaYSQeZoLSTOP
FORMAT(1HO3X2HM=16,5H D=E1l4.6+5H W=E14.64+7TH YSQ=El4.6

15H 7=FEl4.64+9H LSTOP=16)
WRITE(S51e2)(EY{T 1)sALF(I)})WI=1,NR)

? FORMAT(1HOZ2F1l6.6)
NQ1=NC $ NC=Q
CALL WR
NQ=NC1
WRITF{51+4) RCe (R(I)eI=148)s Ly AV2,y Wly W2y W3, WT
4 FORMAT(*ORADII ARE'+9F10e5¢/¢" L ='2EL12.543Xs"AV2 =*,E12.543Xy

1'WL ='4FE12.5e3Xe?W2 =7,E12.5+03X9"W3 =7 3F12.593X+*WT =*,E12.5)
RETURN

END

SUBROUTINE ARITH
COMMON/SFTUP/WsDeWFD(19),0FD(19)4WSD(19+19),DSD(13,19) +DEL{19),WEL

1(19)
COMMON/MAX/TXeMoALAM,ALF(19)+C+CSQsOHIWH

COMMON/MATQ/A{19+19}¢X{(19,1),NR,YSQ+2Z
COMPUTES ELEMENTS OF MATRIX Ao NR=IX+1

DO 16 I=1,1X
PO 11 J=1,1X

11

A(T«J)=WSDIT ) —-ALAM*XDSD(TJ)
A{T.NR}=-DFDII)
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10 AINR.I}=DFD(I)

A{NR.NR)=0.
RETURN

END

SURROUTINE MATQUA+XeNRoNVIDET«NANX)
DIMENSTON A{10)},X(10)

DET=1.0
NR1=NR-1

DO 5 K=1,NR]
__ IRl=K+1
PIVOT=0.0
00 6 I=K,NR
IK={K~1)%NA+I
7=ABSF(A(IK))

TF(Z-PIVCT)6+6417
1 PIVOT=7
IPR=1
_6 CONTINUE
TF{PIVOT}A.9.8
9 DET=0,0

RETURN
8 IF(IPR-K)1011,10

10 DO 12 J=K.NR
IPRJ=(J-1)%NA+IPR
7=A(IPRY)
KJ=(J—1 ) ¥NA+K

ACIPRIN=A(KI)
12 AlKJI=7

DO 13 J=1.NV
IPRJ=(J=1 1XNX+TPR
7=X{IPRJ)
KJd=(J—1 ) ¥NX+K

XCIPRJY)=X(KJ)
13 x(KJ)=7
DET=-DET
11l KK=(K-1)%NA+K
DET=DET*A(KK)
PIVOT=1.0/A{KK)

DO 14 J=IR14NR
- KJI={J-1)*NAPK

ALKJI=A(KJI)I*PIVOT
DO _14 T=1R1.NR

TJ=(J=1 VENA+]
IK={K—-1)*NA+1]

14 ALTAI=ACEJI-ALIK)*A(KY)
DO S _J=1.NV
Kd={J=1)¥NX+K
IF{X(KJ)) 15.5.,15
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X{KJ)=X{KJI*PIVQT

DO 16 I=IR14NR
1d=(J—-1)%NX+1

TK={K=1)%NA+I]
XETA)=X(IJI-ACIK)*X(KJ)

CONTINUE
NRNR={NR-1)*NA+NR

17

IFCAINRNRY) 17,9,17
DET=DET*A{NRNR)

PIVOT=1.C/A(NRNR)
DO 18 J=1eNV

NRJI=(J=1)*NX+NR
X(NRJI=XI{NRJI*PIVOT

DO 18 K=1+NR1
I=NR-K

SumM=0.0
DO 19 L=1.NR1

IL=L%*NA+1
LJ=CJ-1I%NX+(L+1}

19

SUM=SUMBACTLI%XX(LJ)
IJ=(J—1)%*NX+]

18

X{IJI=X{1J)-SUM
RETURN

END

SURRGUTINE. STEP
CCMMON/CONVG/XX{19+1) yRKLMOST.LSTOP+JWAY 6

COCMMON/MAX/ IXeMe ALAMGALF{19),C+CSQO,DHyWH
COMMCN/MATQ/A(19+19) e X({19+,1)+NR4YSQWZ

ODIMENSION ALFX(19)
COMPUTES NFW ALPHAS AND LAMBDA. NR=IX+1

IF(JWAY)S.5,6
DOTK=1+NR

ALF{K)=ALFIK)-X{K.1)
GO _TQ 11

ALF(NR)=ALAM
DO10K=1+NR

XX{Kel)=X{Kel)
ALFX(K)=ALF(K)

10
11

ALF(K)=ALF({K)+X{(K.1)
ALAM=ALF{NR)

DO 20 K=1.1X
TF(ALF(K) .1 T.0.0) 19420

19

ALFIK)I=0.5%ALFX(K)
XX(Koel)=—1.0%ALF (K}

20

CONTINUE
RFTURN

END
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